當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.sin方法代碼示例

本文整理匯總了Python中autograd.numpy.sin方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.sin方法的具體用法?Python numpy.sin怎麽用?Python numpy.sin使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在autograd.numpy的用法示例。


在下文中一共展示了numpy.sin方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _calc_pareto_front

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import sin [as 別名]
def _calc_pareto_front(self, n_points=100, flatten=True):
        regions = [[0, 0.0830015349],
                   [0.182228780, 0.2577623634],
                   [0.4093136748, 0.4538821041],
                   [0.6183967944, 0.6525117038],
                   [0.8233317983, 0.8518328654]]

        pf = []

        for r in regions:
            x1 = anp.linspace(r[0], r[1], int(n_points / len(regions)))
            x2 = 1 - anp.sqrt(x1) - x1 * anp.sin(10 * anp.pi * x1)
            pf.append(anp.array([x1, x2]).T)

        if not flatten:
            pf = anp.concatenate([pf[None,...] for pf in pf])
        else:
            pf = anp.row_stack(pf)

        return pf 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:22,代碼來源:zdt.py

示例2: test_const_graph

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import sin [as 別名]
def test_const_graph():
    L = []
    def foo(x, y):
        L.append(None)
        return grad(lambda x: np.sin(x) + x * 2)(x * y)

    foo_wrapped = const_graph(foo)

    assert len(L) == 0
    assert scalar_close(foo(0., 0.),
                        foo_wrapped(0., 0.))
    assert len(L) == 2
    assert scalar_close(foo(1., 0.5),
                        foo_wrapped(1., 0.5))
    assert len(L) == 3
    assert scalar_close(foo(1., 0.5),
                        foo_wrapped(1., 0.5))
    assert len(L) == 4 
開發者ID:HIPS,項目名稱:autograd,代碼行數:20,代碼來源:test_misc.py

示例3: test_value_and_multigrad

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import sin [as 別名]
def test_value_and_multigrad():
    def complicated_fun(a,b,c,d,e,f=1.1, g=9.0):
        return a + np.sin(b) + np.cosh(c) + np.cos(d) + np.tan(e) + f + g

    A = 0.5
    B = -0.3
    C = 0.2
    D = -1.1
    E = 0.7
    F = 0.6
    G = -0.1

    dfun = grad(complicated_fun, argnum=[3, 1])
    dfun_both = value_and_grad(complicated_fun, argnum=[3, 1])

    check_equivalent(complicated_fun(A, B, C, D, E, f=F, g=G),
                     dfun_both(A, B, C, D, E, f=F, g=G)[0])

    check_equivalent(dfun(A, B, C, D, E, f=F, g=G),
                     dfun_both(A, B, C, D, E, f=F, g=G)[1]) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:22,代碼來源:test_wrappers.py

示例4: compute_f

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import sin [as 別名]
def compute_f(theta, lambda0, dL, shape):
    """ Compute the 'vacuum' field vector """

    # get plane wave k vector components (in units of grid cells)
    k0 = 2 * npa.pi / lambda0 * dL
    kx =  k0 * npa.sin(theta)
    ky = -k0 * npa.cos(theta)  # negative because downwards

    # array to write into
    f_src = npa.zeros(shape, dtype=npa.complex128)

    # get coordinates
    Nx, Ny = shape
    xpoints = npa.arange(Nx)
    ypoints = npa.arange(Ny)
    xv, yv = npa.meshgrid(xpoints, ypoints, indexing='ij')

    # compute values and insert into array
    x_PW = npa.exp(1j * xpoints * kx)[:, None]
    y_PW = npa.exp(1j * ypoints * ky)[:, None]

    f_src[xv, yv] = npa.outer(x_PW, y_PW)

    return f_src.flatten() 
開發者ID:fancompute,項目名稱:ceviche,代碼行數:26,代碼來源:sources.py

示例5: obj_func

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import sin [as 別名]
def obj_func(self, X_, g, alpha=1):
        f = []

        for i in range(0, self.n_obj):
            _f = (1 + g)
            _f *= anp.prod(anp.cos(anp.power(X_[:, :X_.shape[1] - i], alpha) * anp.pi / 2.0), axis=1)
            if i > 0:
                _f *= anp.sin(anp.power(X_[:, X_.shape[1] - i], alpha) * anp.pi / 2.0)

            f.append(_f)

        f = anp.column_stack(f)
        return f 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:15,代碼來源:dtlz.py

示例6: _evaluate

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import sin [as 別名]
def _evaluate(self, x, out, *args, **kwargs):
        f = []
        for i in range(0, self.n_obj - 1):
            f.append(x[:, i])
        f = anp.column_stack(f)

        g = 1 + 9 / self.k * anp.sum(x[:, -self.k:], axis=1)
        h = self.n_obj - anp.sum(f / (1 + g[:, None]) * (1 + anp.sin(3 * anp.pi * f)), axis=1)

        out["F"] = anp.column_stack([f, (1 + g) * h]) 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:12,代碼來源:dtlz.py

示例7: _evaluate

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import sin [as 別名]
def _evaluate(self, x, out, *args, **kwargs):
        out["F"] = 1 - anp.exp(-x ** 2) * anp.sin(2 * anp.pi * x) ** 2 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:4,代碼來源:multimodal.py

示例8: _evaluate

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import sin [as 別名]
def _evaluate(self, x, out, *args, **kwargs):
        f = 3 * x[:, 0] + (10 ** -6) * x[:, 0] ** 3 + 2 * x[:, 1] + (2 * 10 ** (-6)) / 3 * x[:, 1] ** 3

        # Constraints
        g1 = x[:, 2] - x[:, 3] - 0.55
        g2 = x[:, 3] - x[:, 2] - 0.55

        g3 = anp.absolute(1000 * (anp.sin(-x[:, 2] - 0.25) + anp.sin(-x[:, 3] - 0.25)) + 894.8 - x[:, 0]) - 10 ** (-4)
        g4 = anp.absolute(
            1000 * (anp.sin(x[:, 2] - 0.25) + anp.sin(x[:, 2] - x[:, 3] - 0.25)) + 894.8 - x[:, 1]) - 10 ** (-4)
        g5 = anp.absolute(1000 * (anp.sin(x[:, 3] - 0.25) + anp.sin(x[:, 3] - x[:, 2] - 0.25)) + 1294.8) - 10 ** (-4)

        out["F"] = f
        out["G"] = anp.column_stack([g1, g2, g3, g4, g5]) 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:16,代碼來源:g.py

示例9: _evaluate

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import sin [as 別名]
def _evaluate(self, x, out, *args, **kwargs):
        out["F"] = 418.9829 * self.n_var - np.sum(x * np.sin(np.sqrt(np.abs(x))), axis=1) 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:4,代碼來源:schwefel.py

示例10: _evaluate

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import sin [as 別名]
def _evaluate(self, x, out, *args, **kwargs):
        l = []
        for i in range(2):
            l.append(-10 * anp.exp(-0.2 * anp.sqrt(anp.square(x[:, i]) + anp.square(x[:, i + 1]))))
        f1 = anp.sum(anp.column_stack(l), axis=1)

        f2 = anp.sum(anp.power(anp.abs(x), 0.8) + 5 * anp.sin(anp.power(x, 3)), axis=1)

        out["F"] = anp.column_stack([f1, f2]) 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:11,代碼來源:kursawe.py

示例11: calc_constraint

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import sin [as 別名]
def calc_constraint(self, theta, a, b, c, d, e, f1, f2):
        return - (anp.cos(theta) * (f2 - e) - anp.sin(theta) * f1 -
                  a * anp.abs(anp.sin(b * anp.pi * (anp.sin(theta) * (f2 - e) + anp.cos(theta) * f1) ** c)) ** d) 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:5,代碼來源:ctp.py

示例12: _evaluate

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import sin [as 別名]
def _evaluate(self, x, out, *args, **kwargs):
        f1 = x[:, 0]
        c = anp.sum(x[:, 1:], axis=1)
        g = 1.0 + 9.0 * c / (self.n_var - 1)
        f2 = g * (1 - anp.power(f1 * 1.0 / g, 0.5) - (f1 * 1.0 / g) * anp.sin(10 * anp.pi * f1))

        out["F"] = anp.column_stack([f1, f2]) 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:9,代碼來源:zdt.py

示例13: f

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import sin [as 別名]
def f(x):
        return x*np.sin(4*np.pi*x) 
開發者ID:maziarraissi,項目名稱:ParametricGP,代碼行數:4,代碼來源:one_dimensional_example.py

示例14: _state_eq

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import sin [as 別名]
def _state_eq(self, st, u):
        x, x_dot, theta, theta_dot = st
        force = u[0]
        costheta = np.cos(theta)
        sintheta = np.sin(theta)
        temp = (force + self.polemass_length * theta_dot * theta_dot * sintheta) / self.total_mass
        thetaacc = (self.gravity * sintheta - costheta* temp) / (self.length * (4.0/3.0 - self.masspole * costheta * costheta / self.total_mass))
        xacc  = temp - self.polemass_length * thetaacc * costheta / self.total_mass
        x  = x + self.tau * x_dot
        x_dot = x_dot + self.tau * xacc
        theta = theta + self.tau * theta_dot
        theta_dot = theta_dot + self.tau * thetaacc
        return np.array([x, x_dot, theta, theta_dot]) 
開發者ID:neka-nat,項目名稱:ddp-gym,代碼行數:15,代碼來源:cartpole_continuous.py

示例15: xyz_te

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import sin [as 別名]
def xyz_te(self):
        xyz_te = self.xyz_le + self.chord * np.array(
            [np.cos(np.radians(self.twist)),
             0,
             -np.sin(np.radians(self.twist))
             ])

        return xyz_te 
開發者ID:peterdsharpe,項目名稱:AeroSandbox,代碼行數:10,代碼來源:geometry.py


注:本文中的autograd.numpy.sin方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。