當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.reshape方法代碼示例

本文整理匯總了Python中autograd.numpy.reshape方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.reshape方法的具體用法?Python numpy.reshape怎麽用?Python numpy.reshape使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在autograd.numpy的用法示例。


在下文中一共展示了numpy.reshape方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: callback

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import reshape [as 別名]
def callback(X, y, predict_func, acquisition_function, next_point, new_value):
        plt.cla()

        # Show posterior marginals.
        plot_xs = np.reshape(np.linspace(domain_min, domain_max, 300), (300,1))
        pred_mean, pred_std = predict_func(plot_xs)
        ax.plot(plot_xs, pred_mean, 'b')
        ax.fill(np.concatenate([plot_xs, plot_xs[::-1]]),
                np.concatenate([pred_mean - 1.96 * pred_std,
                               (pred_mean + 1.96 * pred_std)[::-1]]),
                alpha=.15, fc='Blue', ec='None')

        ax.plot(X, y, 'kx')
        ax.plot(next_point, new_value, 'ro')

        alphas = acquisition_function(plot_xs)
        ax.plot(plot_xs, alphas, 'r')
        ax.set_ylim([-1.5, 1.5])
        ax.set_xticks([])
        ax.set_yticks([])
        plt.draw()
        plt.pause(1) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:24,代碼來源:bayesian_optimization.py

示例2: plot_images

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import reshape [as 別名]
def plot_images(images, ax, ims_per_row=5, padding=5, digit_dimensions=(28, 28),
                cmap=matplotlib.cm.binary, vmin=None, vmax=None):
    """Images should be a (N_images x pixels) matrix."""
    N_images = images.shape[0]
    N_rows = (N_images - 1) // ims_per_row + 1
    pad_value = np.min(images.ravel())
    concat_images = np.full(((digit_dimensions[0] + padding) * N_rows + padding,
                             (digit_dimensions[1] + padding) * ims_per_row + padding), pad_value)
    for i in range(N_images):
        cur_image = np.reshape(images[i, :], digit_dimensions)
        row_ix = i // ims_per_row
        col_ix = i % ims_per_row
        row_start = padding + (padding + digit_dimensions[0]) * row_ix
        col_start = padding + (padding + digit_dimensions[1]) * col_ix
        concat_images[row_start: row_start + digit_dimensions[0],
                      col_start: col_start + digit_dimensions[1]] = cur_image
    cax = ax.matshow(concat_images, cmap=cmap, vmin=vmin, vmax=vmax)
    plt.xticks(np.array([]))
    plt.yticks(np.array([]))
    return cax 
開發者ID:HIPS,項目名稱:autograd,代碼行數:22,代碼來源:data.py

示例3: advect

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import reshape [as 別名]
def advect(f, vx, vy):
    """Move field f according to x and y velocities (u and v)
       using an implicit Euler integrator."""
    rows, cols = f.shape
    cell_xs, cell_ys = np.meshgrid(np.arange(cols), np.arange(rows))
    center_xs = (cell_xs - vx).ravel()
    center_ys = (cell_ys - vy).ravel()

    # Compute indices of source cells.
    left_ix = np.floor(center_ys).astype(int)
    top_ix  = np.floor(center_xs).astype(int)
    rw = center_ys - left_ix              # Relative weight of right-hand cells.
    bw = center_xs - top_ix               # Relative weight of bottom cells.
    left_ix  = np.mod(left_ix,     rows)  # Wrap around edges of simulation.
    right_ix = np.mod(left_ix + 1, rows)
    top_ix   = np.mod(top_ix,      cols)
    bot_ix   = np.mod(top_ix  + 1, cols)

    # A linearly-weighted sum of the 4 surrounding cells.
    flat_f = (1 - rw) * ((1 - bw)*f[left_ix,  top_ix] + bw*f[left_ix,  bot_ix]) \
                 + rw * ((1 - bw)*f[right_ix, top_ix] + bw*f[right_ix, bot_ix])
    return np.reshape(flat_f, (rows, cols)) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:24,代碼來源:wing.py

示例4: callback

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import reshape [as 別名]
def callback(params):
        print("Log marginal likelihood {}".format(log_marginal_likelihood(params)))

        # Show posterior marginals.
        plot_xs = np.reshape(np.linspace(-5, 5, 300), (300,1))
        pred_mean, pred_cov = combined_predict_fun(params, X, y, plot_xs)
        plot_gp(ax_end_to_end, X, y, pred_mean, pred_cov, plot_xs)
        ax_end_to_end.set_title("X to y")

        layer1_params, layer2_params, hiddens = unpack_all_params(params)
        h_star_mean, h_star_cov = predict_layer_funcs[0](layer1_params, X, hiddens, plot_xs)
        y_star_mean, y_star_cov = predict_layer_funcs[0](layer2_params, np.atleast_2d(hiddens).T, y, plot_xs)

        plot_gp(ax_x_to_h, X, hiddens,                  h_star_mean, h_star_cov, plot_xs)
        ax_x_to_h.set_title("X to hiddens")

        plot_gp(ax_h_to_y, np.atleast_2d(hiddens).T, y, y_star_mean, y_star_cov, plot_xs)
        ax_h_to_y.set_title("hiddens to y")

        plt.draw()
        plt.pause(1.0/60.0)

    # Initialize covariance parameters and hiddens. 
開發者ID:HIPS,項目名稱:autograd,代碼行數:25,代碼來源:deep_gaussian_process.py

示例5: jacobian_and_value

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import reshape [as 別名]
def jacobian_and_value(fun, x):
    """
    Makes a function that returns both the Jacobian and value of a function.

    Assumes that the function `fun` broadcasts along the first dimension of the
    input being differentiated with respect to such that a batch of outputs can
    be computed concurrently for a batch of inputs.
    """
    val = fun(x)
    v_vspace = vspace(val)
    x_vspace = vspace(x)
    x_rep = np.tile(x, (v_vspace.size,) + (1,) * x_vspace.ndim)
    vjp_rep, _ = make_vjp(fun, x_rep)
    jacobian_shape = v_vspace.shape + x_vspace.shape
    basis_vectors = np.array([b for b in v_vspace.standard_basis()])
    jacobian = vjp_rep(basis_vectors)
    return np.reshape(jacobian, jacobian_shape), val 
開發者ID:matt-graham,項目名稱:mici,代碼行數:19,代碼來源:autograd_wrapper.py

示例6: hessian_grad_and_value

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import reshape [as 別名]
def hessian_grad_and_value(fun, x):
    """
    Makes a function that returns the Hessian, gradient & value of a function.

    Assumes that the function `fun` broadcasts along the first dimension of the
    input being differentiated with respect to such that a batch of outputs can
    be computed concurrently for a batch of inputs.
    """
    def grad_fun(x):
        vjp, val = make_vjp(fun, x)
        return vjp(vspace(val).ones()), val
    x_vspace = vspace(x)
    x_rep = np.tile(x, (x_vspace.size,) + (1,) * x_vspace.ndim)
    vjp_grad, (grad, val) = make_vjp(lambda x: atuple(grad_fun(x)), x_rep)
    hessian_shape = x_vspace.shape + x_vspace.shape
    basis_vectors = np.array([b for b in x_vspace.standard_basis()])
    hessian = vjp_grad((basis_vectors, vspace(val).zeros()))
    return np.reshape(hessian, hessian_shape), grad[0], val[0] 
開發者ID:matt-graham,項目名稱:mici,代碼行數:20,代碼來源:autograd_wrapper.py

示例7: jacobian_numerical

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import reshape [as 別名]
def jacobian_numerical(fn, x, step_size=1e-7):
    """ numerically differentiate `fn` w.r.t. its argument `x` """
    in_array = float_2_array(x).flatten()
    out_array = float_2_array(fn(x)).flatten()

    m = in_array.size
    n = out_array.size
    shape = (n, m)
    jacobian = npa.zeros(shape)

    for i in range(m):
        input_i = in_array.copy()
        input_i[i] += step_size
        arg_i = input_i.reshape(in_array.shape)
        output_i = fn(arg_i).flatten()
        grad_i = (output_i - out_array) / step_size
        jacobian[:, i] = get_value_arr(get_value(grad_i))  # need to convert both the grad_i array and its contents to actual data.

    return jacobian 
開發者ID:fancompute,項目名稱:ceviche,代碼行數:21,代碼來源:jacobians.py

示例8: outer_rows

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import reshape [as 別名]
def outer_rows(X, Y):
    """
    Compute the outer product of each row in X, and Y.

    X: n x dx numpy array
    Y: n x dy numpy array

    Return an n x dx x dy numpy array.
    """

    # Matlab way to do this. According to Jonathan Huggins, this is not
    # efficient. Use einsum instead. See below.
    #n, dx = X.shape
    #dy = Y.shape[1]
    #X_col_rep = X[:, np.tile(range(dx), (dy, 1)).T.reshape(-1) ]
    #Y_tile = np.tile(Y, (1, dx))
    #Z = X_col_rep*Y_tile
    #return np.reshape(Z, (n, dx, dy))
    return np.einsum('ij,ik->ijk', X, Y) 
開發者ID:wittawatj,項目名稱:kernel-gof,代碼行數:21,代碼來源:util.py

示例9: gradX_y

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import reshape [as 別名]
def gradX_y(self, X, y):
        """
        Compute the gradient with respect to X (the first argument of the
        kernel). Base class provides a default autograd implementation for convenience.
        Subclasses should override if this does not work.

        X: nx x d numpy array.
        y: numpy array of length d.

        Return a numpy array G of size nx x d, the derivative of k(X, y) with
        respect to X.
        """
        yrow = np.reshape(y, (1, -1))
        f = lambda X: self.eval(X, yrow)
        g = autograd.elementwise_grad(f)
        G = g(X)
        assert G.shape[0] == X.shape[0]
        assert G.shape[1] == X.shape[1]
        return G

# end class KSTKernel 
開發者ID:wittawatj,項目名稱:kernel-gof,代碼行數:23,代碼來源:kernel.py

示例10: eval

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import reshape [as 別名]
def eval(self, X, Y):
        """
        Evaluate the Gaussian kernel on the two 2d numpy arrays.

        Parameters
        ----------
        X : n1 x d numpy array
        Y : n2 x d numpy array

        Return
        ------
        K : a n1 x n2 Gram matrix.
        """
        #(n1, d1) = X.shape
        #(n2, d2) = Y.shape
        #assert d1==d2, 'Dimensions of the two inputs must be the same'
        sumx2 = np.reshape(np.sum(X**2, 1), (-1, 1))
        sumy2 = np.reshape(np.sum(Y**2, 1), (1, -1))
        D2 = sumx2 - 2*np.dot(X, Y.T) + sumy2
        K = np.exp(old_div(-D2,(2.0*self.sigma2)))
        return K 
開發者ID:wittawatj,項目名稱:kernel-gof,代碼行數:23,代碼來源:kernel.py

示例11: forward_pass

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import reshape [as 別名]
def forward_pass(self, X, hyp):     
        Q = self.hidden_dim
        H = np.zeros((X.shape[1],Q))
        
        idx_1 = 0
        idx_2 = idx_1 + self.X_dim*Q
        idx_3 = idx_2 + Q
        idx_4 = idx_3 + Q*Q
        U = np.reshape(hyp[idx_1:idx_2], (self.X_dim,Q))
        b = np.reshape(hyp[idx_2:idx_3], (1,Q))
        W = np.reshape(hyp[idx_3:idx_4], (Q,Q))
        
        for i in range(0, self.lags):
            H = activation(np.matmul(H,W) + np.matmul(X[i,:,:],U) + b)
                
        idx_1 = idx_4
        idx_2 = idx_1 + Q*self.Y_dim
        idx_3 = idx_2 + self.Y_dim
        V = np.reshape(hyp[idx_1:idx_2], (Q,self.Y_dim))
        c = np.reshape(hyp[idx_2:idx_3], (1,self.Y_dim))
        Y = np.matmul(H,V) + c
        
        return Y 
開發者ID:maziarraissi,項目名稱:DeepLearningTutorial,代碼行數:25,代碼來源:RecurrentNeuralNetworks.py

示例12: forward_pass

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import reshape [as 別名]
def forward_pass(self, X, Q, hyp):
        H = X
        idx_3 = 0
        layers = Q.shape[0]   
        for layer in range(0,layers-2):        
            idx_1 = idx_3
            idx_2 = idx_1 + Q[layer]*Q[layer+1]
            idx_3 = idx_2 + Q[layer+1]
            A = np.reshape(hyp[idx_1:idx_2], (Q[layer],Q[layer+1]))
            b = np.reshape(hyp[idx_2:idx_3], (1,Q[layer+1]))
            H = activation(np.matmul(H,A) + b)
            
        idx_1 = idx_3
        idx_2 = idx_1 + Q[-2]*Q[-1]
        idx_3 = idx_2 + Q[-1]
        A = np.reshape(hyp[idx_1:idx_2], (Q[-2],Q[-1]))
        b = np.reshape(hyp[idx_2:idx_3], (1,Q[-1]))
        mu = np.matmul(H,A) + b
                
        return mu 
開發者ID:maziarraissi,項目名稱:DeepLearningTutorial,代碼行數:22,代碼來源:NeuralNetworks.py

示例13: _do_optim

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import reshape [as 別名]
def _do_optim(self, p, optim_x0, gn, data, entries='all'):
        optim_bounds = [self.wrt_bounds[p] for k in
                        range(np.prod(self.wrt_dims[p]))]

        result = minimize(fun=self._optim_wrap,jac=True,
                          x0=np.array(optim_x0).reshape(-1),
                          args=(p,
                                {'wrt': p,
                                 'p': self.precision_,
                                 'm': self.mu_,
                                 'a': self.alpha_,
                                 'xn': data['obs'],
                                 'xln': data['lagged'],
                                 'gn': gn,  # post. uni. concat.
                                 'entries': entries
                                }),
                          bounds=optim_bounds,
                          method='TNC')
        new_value = result.x.reshape(self.wrt_dims[p])
        return new_value 
開發者ID:mackelab,項目名稱:autohmm,代碼行數:22,代碼來源:ar.py

示例14: iuwt

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import reshape [as 別名]
def iuwt(starlet):

    """ Inverse starlet transform

    Parameters
    ----------
    starlet: Shapelet object
        Starlet to be inverted

    Returns
    -------
    cJ: array
        a 2D image that corresponds to the inverse transform of stralet.
    """
    lvl, n1, n2 = np.shape(starlet)
    n = np.size(h)
    # Coarse scale
    cJ = fft.Fourier(starlet[-1, :, :])
    for i in np.arange(1, lvl):
        newh = np.zeros((n + (n - 1) * (2 ** (lvl - i - 1) - 1), 1))
        newh[0::2 ** (lvl - i - 1), 0] = h
        newhT = fft.Fourier(newh.T)
        newh = fft.Fourier(newh)

        # Line convolution
        cnew = fft.convolve(cJ, newh, axes=[0])
        # Column convolution
        cnew = fft.convolve(cnew, newhT, axes=[1])

        cJ = fft.Fourier(cnew.image + starlet[lvl - 1 - i, :, :])

    return np.reshape(cJ.image, (n1, n2)) 
開發者ID:pmelchior,項目名稱:scarlet,代碼行數:34,代碼來源:wavelet.py

示例15: sum_trailing_antidiagonals

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import reshape [as 別名]
def sum_trailing_antidiagonals(self):
        trailing_shape = list(self.liks.shape[-2:])
        lik = np.reshape(self.liks, [-1] + trailing_shape)
        lik = sum_trailing_antidiagonals(lik)
        self.liks = np.reshape(lik, [-1] + list(self.liks.shape[1:-2]) + [sum(trailing_shape) - 1])
        self.pop_labels.pop() 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:8,代碼來源:compute_sfs.py


注:本文中的autograd.numpy.reshape方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。