當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.prod方法代碼示例

本文整理匯總了Python中autograd.numpy.prod方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.prod方法的具體用法?Python numpy.prod怎麽用?Python numpy.prod使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在autograd.numpy的用法示例。


在下文中一共展示了numpy.prod方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _evaluate

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import prod [as 別名]
def _evaluate(self, x, out, *args, **kwargs):
        l = []
        for j in range(self.n_var):
            l.append((j + 1) * x[:, j] ** 2)
        sum_jx = anp.sum(anp.column_stack(l), axis=1)

        a = anp.sum(anp.cos(x) ** 4, axis=1)
        b = 2 * anp.prod(anp.cos(x) ** 2, axis=1)
        c = (anp.sqrt(sum_jx)).flatten()
        c = c + (c == 0) * 1e-20

        f = -anp.absolute((a - b) / c)

        # Constraints
        g1 = -anp.prod(x, 1) + 0.75
        g2 = anp.sum(x, axis=1) - 7.5 * self.n_var

        out["F"] = f
        out["G"] = anp.column_stack([g1, g2]) 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:21,代碼來源:g.py

示例2: log_norm

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import prod [as 別名]
def log_norm(self):
        try:
            return self._log_norm
        except AttributeError:
            if self.frame != self.model_frame:
                images_ = self.images[self.slices_for_images]
                weights_ = self.weights[self.slices_for_images]
            else:
                images_ = self.images
                weights_ = self.weights

            # normalization of the single-pixel likelihood:
            # 1 / [(2pi)^1/2 (sigma^2)^1/2]
            # with inverse variance weights: sigma^2 = 1/weight
            # full likelihood is sum over all data samples: pixel in images
            # NOTE: this assumes that all pixels are used in likelihood!
            log_sigma = np.zeros(weights_.shape, dtype=self.weights.dtype)
            cuts = weights_ > 0
            log_sigma[cuts] = np.log(1 / weights_[cuts])
            self._log_norm = (
                    np.prod(images_.shape) / 2 * np.log(2 * np.pi)
                    + np.sum(log_sigma) / 2
            )
        return self._log_norm 
開發者ID:pmelchior,項目名稱:scarlet,代碼行數:26,代碼來源:observation.py

示例3: get_loss

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import prod [as 別名]
def get_loss(self, model):
        """Computes the loss/fidelity of a given model wrt to the observation
        Parameters
        ----------
        model: array
            A model from `Blend`
        Returns
        -------
        loss: float
            Loss of the model
        """
        model_ = self.render(model)
        images_ = self.images
        weights_ = self.weights

        # properly normalized likelihood
        log_sigma = np.zeros(weights_.shape, dtype=weights_.dtype)
        cuts = weights_ > 0
        log_sigma[cuts] = np.log(1 / weights_[cuts])
        log_norm = (
                np.prod(images_.shape) / 2 * np.log(2 * np.pi)
                + np.sum(log_sigma) / 2
        )

        return log_norm + 0.5 * np.sum(weights_ * (model_ - images_) ** 2) 
開發者ID:pmelchior,項目名稱:scarlet,代碼行數:27,代碼來源:observation.py

示例4: _do_optim

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import prod [as 別名]
def _do_optim(self, p, optim_x0, gn, data, entries='all'):
        optim_bounds = [self.wrt_bounds[p] for k in
                        range(np.prod(self.wrt_dims[p]))]

        result = minimize(fun=self._optim_wrap,jac=True,
                          x0=np.array(optim_x0).reshape(-1),
                          args=(p,
                                {'wrt': p,
                                 'p': self.precision_,
                                 'm': self.mu_,
                                 'a': self.alpha_,
                                 'xn': data['obs'],
                                 'xln': data['lagged'],
                                 'gn': gn,  # post. uni. concat.
                                 'entries': entries
                                }),
                          bounds=optim_bounds,
                          method='TNC')
        new_value = result.x.reshape(self.wrt_dims[p])
        return new_value 
開發者ID:mackelab,項目名稱:autohmm,代碼行數:22,代碼來源:ar.py

示例5: obj_func

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import prod [as 別名]
def obj_func(self, X_, g, alpha=1):
        f = []

        for i in range(0, self.n_obj):
            _f = (1 + g)
            _f *= anp.prod(anp.cos(anp.power(X_[:, :X_.shape[1] - i], alpha) * anp.pi / 2.0), axis=1)
            if i > 0:
                _f *= anp.sin(anp.power(X_[:, X_.shape[1] - i], alpha) * anp.pi / 2.0)

            f.append(_f)

        f = anp.column_stack(f)
        return f 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:15,代碼來源:dtlz.py

示例6: _evaluate

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import prod [as 別名]
def _evaluate(self, x, out, *args, **kwargs):
        X_, X_M = x[:, :self.n_obj - 1], x[:, self.n_obj - 1:]
        g = self.g1(X_M)

        f = []
        for i in range(0, self.n_obj):
            _f = 0.5 * (1 + g)
            _f *= anp.prod(X_[:, :X_.shape[1] - i], axis=1)
            if i > 0:
                _f *= 1 - X_[:, X_.shape[1] - i]
            f.append(_f)

        out["F"] = anp.column_stack(f) 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:15,代碼來源:dtlz.py

示例7: _evaluate

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import prod [as 別名]
def _evaluate(self, x, out, *args, **kwargs):
        out["F"] = 1 + 1 / 4000 * np.sum(np.power(x, 2), axis=1) \
                  - np.prod(np.cos(x / np.sqrt(np.arange(1, x.shape[1] + 1))), axis=1) 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:5,代碼來源:griewank.py

示例8: matmul_last_axis

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import prod [as 別名]
def matmul_last_axis(self, mat, axes=1):
        reshaped_liks = np.reshape(self.liks, [-1] + [np.prod(
            self.liks.shape[-axes:])])
        reshaped_mat = np.reshape(mat, [np.prod(
            mat.shape[:axes], dtype=int)] + [-1])
        reshaped_liks = np.dot(reshaped_liks, reshaped_mat)
        self.liks = np.reshape(reshaped_liks, list(self.liks.shape[:-axes]) + list(mat.shape[axes:])) 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:9,代碼來源:compute_sfs.py

示例9: _reshape

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import prod [as 別名]
def _reshape(in_arr, in_sublist, *out_sublists):
    assert len(out_sublists) == 3

    old_sublist = in_sublist
    in_sublist = sum(out_sublists, [])
    in_arr = _transpose(in_arr, old_sublist, in_sublist)

    # in_arr.shape breaks in autograd if it has no dimension
    if in_sublist:
        shapes = {s:i for i,s in zip(in_arr.shape, in_sublist)}
    else: shapes = {}
    return np.reshape(in_arr, [np.prod([shapes[s] for s in out_subs], dtype=int)
                               for out_subs in out_sublists]) 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:15,代碼來源:einsum2.py

示例10: add_shape

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import prod [as 別名]
def add_shape(self, name, shape):
        start = self.num_weights
        self.num_weights += np.prod(shape)
        self.idxs_and_shapes[name] = (slice(start, self.num_weights), shape) 
開發者ID:dtak,項目名稱:tree-regularization-public,代碼行數:6,代碼來源:model.py

示例11: add_weights

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import prod [as 別名]
def add_weights(self, name, shape):
        start = self.N
        self.N += np.prod(shape)
        self.idxs_and_shapes[name] = (slice(start, self.N), shape) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:6,代碼來源:convnet.py

示例12: build_weights_dict

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import prod [as 別名]
def build_weights_dict(self, input_shape):
        # Input shape is anything (all flattened)
        input_size = np.prod(input_shape, dtype=int)
        self.parser = WeightsParser()
        self.parser.add_weights('params', (input_size, self.size))
        self.parser.add_weights('biases', (self.size,))
        return self.parser.N, (self.size,) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:9,代碼來源:convnet.py

示例13: forward_pass

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import prod [as 別名]
def forward_pass(self, inputs, param_vector):
        params = self.parser.get(param_vector, 'params')
        biases = self.parser.get(param_vector, 'biases')
        if inputs.ndim > 2:
            inputs = inputs.reshape((inputs.shape[0], np.prod(inputs.shape[1:])))
        return self.nonlinearity(np.dot(inputs[:, :], params) + biases) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:8,代碼來源:convnet.py

示例14: load_mnist

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import prod [as 別名]
def load_mnist():
    partial_flatten = lambda x : np.reshape(x, (x.shape[0], np.prod(x.shape[1:])))
    one_hot = lambda x, k: np.array(x[:,None] == np.arange(k)[None, :], dtype=int)
    train_images, train_labels, test_images, test_labels = data_mnist.mnist()
    train_images = partial_flatten(train_images) / 255.0
    test_images  = partial_flatten(test_images)  / 255.0
    train_labels = one_hot(train_labels, 10)
    test_labels = one_hot(test_labels, 10)
    N_data = train_images.shape[0]

    return N_data, train_images, train_labels, test_images, test_labels 
開發者ID:HIPS,項目名稱:autograd,代碼行數:13,代碼來源:data.py

示例15: test_jacobian_against_stacked_grads

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import prod [as 別名]
def test_jacobian_against_stacked_grads():
    scalar_funs = [
        lambda x: np.sum(x**3),
        lambda x: np.prod(np.sin(x) + np.sin(x)),
        lambda x: grad(lambda y: np.exp(y) * np.tanh(x[0]))(x[1])
    ]

    vector_fun = lambda x: np.array([f(x) for f in scalar_funs])

    x = npr.randn(5)
    jac = jacobian(vector_fun)(x)
    grads = [grad(f)(x) for f in scalar_funs]

    assert np.allclose(jac, np.vstack(grads)) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:16,代碼來源:test_jacobian.py


注:本文中的autograd.numpy.prod方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。