本文整理匯總了Python中autograd.numpy.pi方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.pi方法的具體用法?Python numpy.pi怎麽用?Python numpy.pi使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類autograd.numpy
的用法示例。
在下文中一共展示了numpy.pi方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import pi [as 別名]
def __init__(self, n_var=2, n_constr=1, option="linear"):
super().__init__(n_var=n_var, n_obj=2, n_constr=n_constr, xl=0, xu=1, type_var=anp.double)
def g_linear(x):
return 1 + anp.sum(x, axis=1)
def g_multimodal(x):
A = 10
return 1 + A * x.shape[1] + anp.sum(x ** 2 - A * anp.cos(2 * anp.pi * x), axis=1)
if option == "linear":
self.calc_g = g_linear
elif option == "multimodal":
self.calc_g = g_multimodal
self.xl[:, 1:] = -5.12
self.xu[:, 1:] = 5.12
else:
print("Unknown option for CTP single.")
示例2: _calc_pareto_front
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import pi [as 別名]
def _calc_pareto_front(self, n_points=100, flatten=True):
regions = [[0, 0.0830015349],
[0.182228780, 0.2577623634],
[0.4093136748, 0.4538821041],
[0.6183967944, 0.6525117038],
[0.8233317983, 0.8518328654]]
pf = []
for r in regions:
x1 = anp.linspace(r[0], r[1], int(n_points / len(regions)))
x2 = 1 - anp.sqrt(x1) - x1 * anp.sin(10 * anp.pi * x1)
pf.append(anp.array([x1, x2]).T)
if not flatten:
pf = anp.concatenate([pf[None,...] for pf in pf])
else:
pf = anp.row_stack(pf)
return pf
示例3: log_norm
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import pi [as 別名]
def log_norm(self):
try:
return self._log_norm
except AttributeError:
if self.frame != self.model_frame:
images_ = self.images[self.slices_for_images]
weights_ = self.weights[self.slices_for_images]
else:
images_ = self.images
weights_ = self.weights
# normalization of the single-pixel likelihood:
# 1 / [(2pi)^1/2 (sigma^2)^1/2]
# with inverse variance weights: sigma^2 = 1/weight
# full likelihood is sum over all data samples: pixel in images
# NOTE: this assumes that all pixels are used in likelihood!
log_sigma = np.zeros(weights_.shape, dtype=self.weights.dtype)
cuts = weights_ > 0
log_sigma[cuts] = np.log(1 / weights_[cuts])
self._log_norm = (
np.prod(images_.shape) / 2 * np.log(2 * np.pi)
+ np.sum(log_sigma) / 2
)
return self._log_norm
示例4: get_loss
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import pi [as 別名]
def get_loss(self, model):
"""Computes the loss/fidelity of a given model wrt to the observation
Parameters
----------
model: array
A model from `Blend`
Returns
-------
loss: float
Loss of the model
"""
model_ = self.render(model)
images_ = self.images
weights_ = self.weights
# properly normalized likelihood
log_sigma = np.zeros(weights_.shape, dtype=weights_.dtype)
cuts = weights_ > 0
log_sigma[cuts] = np.log(1 / weights_[cuts])
log_norm = (
np.prod(images_.shape) / 2 * np.log(2 * np.pi)
+ np.sum(log_sigma) / 2
)
return log_norm + 0.5 * np.sum(weights_ * (model_ - images_) ** 2)
示例5: black_box_variational_inference
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import pi [as 別名]
def black_box_variational_inference(logprob, D, num_samples):
"""Implements http://arxiv.org/abs/1401.0118, and uses the
local reparameterization trick from http://arxiv.org/abs/1506.02557"""
def unpack_params(params):
# Variational dist is a diagonal Gaussian.
mean, log_std = params[:D], params[D:]
return mean, log_std
def gaussian_entropy(log_std):
return 0.5 * D * (1.0 + np.log(2*np.pi)) + np.sum(log_std)
rs = npr.RandomState(0)
def variational_objective(params, t):
"""Provides a stochastic estimate of the variational lower bound."""
mean, log_std = unpack_params(params)
samples = rs.randn(num_samples, D) * np.exp(log_std) + mean
lower_bound = gaussian_entropy(log_std) + np.mean(logprob(samples, t))
return -lower_bound
gradient = grad(variational_objective)
return variational_objective, gradient, unpack_params
示例6: compute_f
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import pi [as 別名]
def compute_f(theta, lambda0, dL, shape):
""" Compute the 'vacuum' field vector """
# get plane wave k vector components (in units of grid cells)
k0 = 2 * npa.pi / lambda0 * dL
kx = k0 * npa.sin(theta)
ky = -k0 * npa.cos(theta) # negative because downwards
# array to write into
f_src = npa.zeros(shape, dtype=npa.complex128)
# get coordinates
Nx, Ny = shape
xpoints = npa.arange(Nx)
ypoints = npa.arange(Ny)
xv, yv = npa.meshgrid(xpoints, ypoints, indexing='ij')
# compute values and insert into array
x_PW = npa.exp(1j * xpoints * kx)[:, None]
y_PW = npa.exp(1j * ypoints * ky)[:, None]
f_src[xv, yv] = npa.outer(x_PW, y_PW)
return f_src.flatten()
示例7: multivariate_normal_density
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import pi [as 別名]
def multivariate_normal_density(mean, cov, X):
"""
Exact density (not log density) of a multivariate Gaussian.
mean: length-d array
cov: a dxd covariance matrix
X: n x d 2d-array
"""
evals, evecs = np.linalg.eigh(cov)
cov_half_inv = evecs.dot(np.diag(evals**(-0.5))).dot(evecs.T)
# print(evals)
half_evals = np.dot(X-mean, cov_half_inv)
full_evals = np.sum(half_evals**2, 1)
unden = np.exp(-0.5*full_evals)
Z = np.sqrt(np.linalg.det(2.0*np.pi*cov))
den = unden/Z
assert len(den) == X.shape[0]
return den
示例8: __init__
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import pi [as 別名]
def __init__(self, n_var=2, n_constr=1, option="linear"):
super().__init__(n_var=n_var, n_obj=2, n_constr=n_constr, xl=0, xu=1, type_var=anp.double)
def g_linear(x):
return 1 + anp.sum(x, axis=1)
def g_multimodal(x):
A = 10
return 1 + A * x.shape[1] + anp.sum(x ** 2 - A * anp.cos(2 * anp.pi * x), axis=1)
if option == "linear":
self.calc_g = g_linear
elif option == "multimodal":
self.calc_g = g_multimodal
self.xl[:, 1:] = -5.12
self.xu[:, 1:] = 5.12
else:
print("Unknown option for CTP problems.")
示例9: likelihood
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import pi [as 別名]
def likelihood(self, hyp):
Y = self.Y_batch
# Encode
mu_1, Sigma_1 = self.neural_net(Y, self.layers_encoder, hyp[self.idx_encoder])
# Reparametrization trick
epsilon = np.random.randn(self.N_batch,self.Z_dim)
z = mu_1 + epsilon*np.sqrt(Sigma_1)
# Decode
mu_2, Sigma_2 = self.neural_net(z, self.layers_decoder, hyp[self.idx_decoder])
# Log-determinants
log_det_1 = np.sum(np.log(Sigma_1))
log_det_2 = np.sum(np.log(Sigma_2))
# KL[q(z|y) || p(z)]
KL = 0.5*(np.sum(Sigma_1) + np.sum(mu_1**2) - self.Z_dim - log_det_1)
# -log p(y)
NLML = 0.5*(np.sum((Y-mu_2)**2/Sigma_2) + log_det_2 + np.log(2.*np.pi)*self.Y_dim*self.N_batch)
return NLML + KL
示例10: _ll
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import pi [as 別名]
def _ll(self, m, p, xn, **kwargs):
"""Computation of log likelihood
Dimensions
----------
m : n_unique x n_features
p : n_unique x n_features x n_features
xn: N x n_features
"""
samples = xn.shape[0]
xn = xn.reshape(samples, 1, self.n_features)
m = m.reshape(1, self.n_unique, self.n_features)
det = np.linalg.det(np.linalg.inv(p))
det = det.reshape(1, self.n_unique)
tem = np.einsum('NUF,UFX,NUX->NU', (xn - m), p, (xn - m))
res = (-self.n_features/2.0)*np.log(2*np.pi) - 0.5*tem - 0.5*np.log(det)
return res # N x n_unique
示例11: g1
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import pi [as 別名]
def g1(self, X_M):
return 100 * (self.k + anp.sum(anp.square(X_M - 0.5) - anp.cos(20 * anp.pi * (X_M - 0.5)), axis=1))
示例12: obj_func
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import pi [as 別名]
def obj_func(self, X_, g, alpha=1):
f = []
for i in range(0, self.n_obj):
_f = (1 + g)
_f *= anp.prod(anp.cos(anp.power(X_[:, :X_.shape[1] - i], alpha) * anp.pi / 2.0), axis=1)
if i > 0:
_f *= anp.sin(anp.power(X_[:, X_.shape[1] - i], alpha) * anp.pi / 2.0)
f.append(_f)
f = anp.column_stack(f)
return f
示例13: _evaluate
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import pi [as 別名]
def _evaluate(self, x, out, *args, **kwargs):
f = []
for i in range(0, self.n_obj - 1):
f.append(x[:, i])
f = anp.column_stack(f)
g = 1 + 9 / self.k * anp.sum(x[:, -self.k:], axis=1)
h = self.n_obj - anp.sum(f / (1 + g[:, None]) * (1 + anp.sin(3 * anp.pi * f)), axis=1)
out["F"] = anp.column_stack([f, (1 + g) * h])
示例14: __init__
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import pi [as 別名]
def __init__(self, n_var=2, a=20, b=1/5, c=2 * anp.pi):
super().__init__(n_var=n_var, n_obj=1, n_constr=0, xl=-32.768, xu=+32.768, type_var=anp.double)
self.a = a
self.b = b
self.c = c
示例15: _evaluate
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import pi [as 別名]
def _evaluate(self, x, out, *args, **kwargs):
z = anp.power(x, 2) - self.A * anp.cos(2 * anp.pi * x)
out["F"] = self.A * self.n_var + anp.sum(z, axis=1)