當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.newaxis方法代碼示例

本文整理匯總了Python中autograd.numpy.newaxis方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.newaxis方法的具體用法?Python numpy.newaxis怎麽用?Python numpy.newaxis使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在autograd.numpy的用法示例。


在下文中一共展示了numpy.newaxis方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: truncate0

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import newaxis [as 別名]
def truncate0(x, axis=None, strict=False, tol=1e-13):
    '''make sure everything in x is non-negative'''
    # the maximum along axis
    maxes = np.maximum(np.amax(x, axis=axis), 1e-300)
    # the negative part of minimum along axis
    mins = np.maximum(-np.amin(x, axis=axis), 0.0)

    # assert the negative numbers are small (relative to maxes)
    assert np.all(mins <= tol * maxes)

    if axis is not None:
        idx = [slice(None)] * x.ndim
        idx[axis] = np.newaxis
        mins = mins[idx]
        maxes = maxes[idx]

    if strict:
        # set everything below the tolerance to 0
        return set0(x, x < tol * maxes)
    else:
        # set everything of same magnitude as most negative number, to 0
        return set0(x, x < 2 * mins) 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:24,代碼來源:util.py

示例2: bound_by_data

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import newaxis [as 別名]
def bound_by_data(Z, Data):
    """
    Determine lower and upper bound for each dimension from the Data, and project 
    Z so that all points in Z live in the bounds.

    Z: m x d 
    Data: n x d

    Return a projected Z of size m x d.
    """
    n, d = Z.shape
    Low = np.min(Data, 0)
    Up = np.max(Data, 0)
    LowMat = np.repeat(Low[np.newaxis, :], n, axis=0)
    UpMat = np.repeat(Up[np.newaxis, :], n, axis=0)

    Z = np.maximum(LowMat, Z)
    Z = np.minimum(UpMat, Z)
    return Z 
開發者ID:wittawatj,項目名稱:kernel-gof,代碼行數:21,代碼來源:util.py

示例3: gradX_Y

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import newaxis [as 別名]
def gradX_Y(self, X, Y, dim):
        """
        Compute the gradient with respect to the dimension dim of X in k(X, Y).

        X: nx x d
        Y: ny x d

        Return a numpy array of size nx x ny.
        """
        D2 = util.dist2_matrix(X, Y)
        # 1d array of length nx
        Xi = X[:, dim]
        # 1d array of length ny
        Yi = Y[:, dim]
        # nx x ny
        dim_diff = Xi[:, np.newaxis] - Yi[np.newaxis, :]

        b = self.b
        c = self.c
        Gdim = ( 2.0*b*(c**2 + D2)**(b-1) )*dim_diff
        assert Gdim.shape[0] == X.shape[0]
        assert Gdim.shape[1] == Y.shape[0]
        return Gdim 
開發者ID:wittawatj,項目名稱:kernel-gof,代碼行數:25,代碼來源:kernel.py

示例4: pair_gradX_Y

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import newaxis [as 別名]
def pair_gradX_Y(self, X, Y):
        """
        Compute the gradient with respect to X in k(X, Y), evaluated at the
        specified X and Y.

        X: n x d
        Y: n x d

        Return a numpy array of size n x d
        """
        sigma2 = self.sigma2
        Kvec = self.pair_eval(X, Y)
        # n x d
        Diff = X - Y
        G = -Kvec[:, np.newaxis]*Diff/sigma2
        return G 
開發者ID:wittawatj,項目名稱:kernel-gof,代碼行數:18,代碼來源:kernel.py

示例5: gradXY_sum

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import newaxis [as 別名]
def gradXY_sum(self, X, Y):
        r"""
        Compute \sum_{i=1}^d \frac{\partial^2 k(X, Y)}{\partial x_i \partial y_i}
        evaluated at each x_i in X, and y_i in Y.

        X: nx x d numpy array.
        Y: ny x d numpy array.

        Return a nx x ny numpy array of the derivatives.
        """
        (n1, d1) = X.shape
        (n2, d2) = Y.shape
        assert d1==d2, 'Dimensions of the two inputs must be the same'
        d = d1
        sigma2 = self.sigma2
        D2 = np.sum(X**2, 1)[:, np.newaxis] - 2*np.dot(X, Y.T) + np.sum(Y**2, 1)
        K = np.exp(old_div(-D2,(2.0*sigma2)))
        G = K/sigma2*(d - old_div(D2,sigma2))
        return G 
開發者ID:wittawatj,項目名稱:kernel-gof,代碼行數:21,代碼來源:kernel.py

示例6: eval

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import newaxis [as 別名]
def eval(self, X, Y):
        """
        Evaluate the kernel on data X and Y
        X: nx x d where each row represents one point
        Y: ny x d
        return nx x ny Gram matrix
        """
        sumx2 = np.sum(X**2, axis=1)[:, np.newaxis]
        sumy2 = np.sum(Y**2, axis=1)[np.newaxis, :]
        D2 = sumx2 - 2 * np.dot(X, Y.T) + sumy2
        return np.tensordot(
            self.wts,
            np.exp(
                D2[np.newaxis, :, :]
                / (-2 * self.sigma2s[:, np.newaxis, np.newaxis])),
            1) 
開發者ID:wittawatj,項目名稱:kernel-gof,代碼行數:18,代碼來源:kernel.py

示例7: gradY_X

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import newaxis [as 別名]
def gradY_X(self, X, Y, dim):
        """
        Compute the gradient with respect to the dimension dim of Y in k(X, Y).

        X: nx x d
        Y: ny x d

        Return a numpy array of size nx x ny.
        """
        gamma = 1/X.shape[1] if self.gamma is None else self.gamma

        if self.degree == 1:  # optimization, other expression is valid too
            out = gamma * X[:, dim, np.newaxis]  # nx x 1
            return np.repeat(out, Y.shape[0], axis=1)

        dot = np.dot(X, Y.T)
        return (self.degree * (gamma * dot + self.coef0) ** (self.degree - 1)
                * gamma * X[:, dim, np.newaxis]) 
開發者ID:wittawatj,項目名稱:kernel-gof,代碼行數:20,代碼來源:kernel.py

示例8: ascii_table

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import newaxis [as 別名]
def ascii_table(self, tablefmt="pipe"):
        """
        Return an ASCII string representation of the table.

        tablefmt: "plain", "fancy_grid", "grid", "simple" might be useful.
        """
        methods = self.methods
        xvalues = self.xvalues
        plot_matrix = self.plot_matrix

        import tabulate
        # https://pypi.python.org/pypi/tabulate
        aug_table = np.hstack((np.array(methods)[:, np.newaxis], plot_matrix))
        return tabulate.tabulate(aug_table, xvalues, tablefmt=tablefmt)

# end of class PlotValues 
開發者ID:wittawatj,項目名稱:kernel-gof,代碼行數:18,代碼來源:plot.py

示例9: image

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import newaxis [as 別名]
def image(self, image):
        """Updates the coefficients if the image is changed"""
        if len(image.shape) == 2:
            self._image = image[np.newaxis, :, :]
        else:
            self._image = image
        if self._direct == True:
            self._coeffs = self.direct_transform()
        else:
            self._coeffs = self.transform() 
開發者ID:pmelchior,項目名稱:scarlet,代碼行數:12,代碼來源:wavelet.py

示例10: coefficients

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import newaxis [as 別名]
def coefficients(self, coeffs):
        """Updates the image if the coefficients are changed"""
        if len(np.shape(coeffs)) == 3:
            coeffs = coeffs[np.newaxis, :, :, :]
        self._coeffs = coeffs
        rec = []
        for star in self._coeffs:
            rec.append(iuwt(star))
        self._image = np.array(rec) 
開發者ID:pmelchior,項目名稱:scarlet,代碼行數:11,代碼來源:wavelet.py

示例11: transform

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import newaxis [as 別名]
def transform(self):
        """ Performs the wavelet transform of an image by convolution with the seed wavelet

         Seed wavelets are the transform of a dirac in starlets when computed for a given shape,
         the seed is cached to be reused for images with the same shape.
         The transform is applied to `self._image`

        Returns
        -------
        starlet: numpy ndarray
            the starlet transform of the Starlet object's image
        """
        try:
            #Check if the starlet seed exists
            seed_fft = Cache.check('Starlet', tuple(self._starlet_shape))
        except KeyError:
            # make a starlet seed
            self.seed = mk_starlet(self._starlet_shape)
            # Take its fft
            seed_fft = fft.Fourier(self.seed)
            seed_fft.fft(self._starlet_shape[-2:], (-2,-1))
            # Cache the fft
            Cache.set('Starlet', tuple(self._starlet_shape), seed_fft)
        coefficients = []
        for im in self._image:
            coefficients.append(fft.convolve(seed_fft, fft.Fourier(im[np.newaxis, :, :]), axes = (-2,-1)).image)
        return np.array(coefficients) 
開發者ID:pmelchior,項目名稱:scarlet,代碼行數:29,代碼來源:wavelet.py

示例12: kernel

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import newaxis [as 別名]
def kernel(X, Xp, hyp):
    output_scale = np.exp(hyp[0])
    lengthscales = np.sqrt(np.exp(hyp[1:]))
    X = X/lengthscales
    Xp = Xp/lengthscales
    X_SumSquare = np.sum(np.square(X),axis=1);
    Xp_SumSquare = np.sum(np.square(Xp),axis=1);
    mul = np.dot(X,Xp.T);
    dists = X_SumSquare[:,np.newaxis]+Xp_SumSquare-2.0*mul
    return output_scale * np.exp(-0.5 * dists) 
開發者ID:maziarraissi,項目名稱:ParametricGP,代碼行數:12,代碼來源:Utilities.py

示例13: weighted_post

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import newaxis [as 別名]
def weighted_post(th0, Sig0inv, Siginv, x, w): 
  Sigp = np.linalg.inv(Sig0inv + w.sum()*Siginv)
  mup = np.dot(Sigp,  np.dot(Sig0inv,th0) + np.dot(Siginv, (w[:, np.newaxis]*x).sum(axis=0)))
  return mup, Sigp 
開發者ID:trevorcampbell,項目名稱:bayesian-coresets,代碼行數:6,代碼來源:test_gaussian.py

示例14: ll_m2_exact

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import newaxis [as 別名]
def ll_m2_exact(muw, Sigw, Siginv, x):
  L = np.linalg.cholesky(Siginv)
  Rho = np.dot(np.dot(L.T, Sigw), L)

  crho = 2*(Rho**2).sum() + (np.diag(Rho)*np.diag(Rho)[:, np.newaxis]).sum()

  mu = np.dot(L.T, (x - muw).T).T
  musq = (mu**2).sum(axis=1)

  return 0.25*(crho + musq*musq[:, np.newaxis] + np.diag(Rho).sum()*(musq + musq[:,np.newaxis]) + 4*np.dot(np.dot(mu, Rho), mu.T))

#Var[Log N(x;, mu, Sig)] under mu ~ N(muw, Sigw) 
開發者ID:trevorcampbell,項目名稱:bayesian-coresets,代碼行數:14,代碼來源:test_gaussian.py

示例15: ll_m2_exact_diag

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import newaxis [as 別名]
def ll_m2_exact_diag(muw, Sigw, Siginv, x):
  L = np.linalg.cholesky(Siginv)
  Rho = np.dot(np.dot(L.T, Sigw), L)

  crho = 2*(Rho**2).sum() + (np.diag(Rho)*np.diag(Rho)[:, np.newaxis]).sum()

  mu = np.dot(L.T, (x - muw).T).T
  musq = (mu**2).sum(axis=1)

  return 0.25*(crho + musq**2 + 2*np.diag(Rho).sum()*musq + 4*(np.dot(mu, Rho)*mu).sum(axis=1)) 
開發者ID:trevorcampbell,項目名稱:bayesian-coresets,代碼行數:12,代碼來源:test_gaussian.py


注:本文中的autograd.numpy.newaxis方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。