當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.ndarray方法代碼示例

本文整理匯總了Python中autograd.numpy.ndarray方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.ndarray方法的具體用法?Python numpy.ndarray怎麽用?Python numpy.ndarray使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在autograd.numpy的用法示例。


在下文中一共展示了numpy.ndarray方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_isinstance

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import ndarray [as 別名]
def test_isinstance():
  def checker(ex, type_, truthval):
    assert isinstance(ex, type_) == truthval
    return 1.

  examples = [
      [list,          [[]],          [()]],
      [np.ndarray,    [np.zeros(1)], [[]]],
      [(tuple, list), [[], ()],      [np.zeros(1)]],
  ]

  for type_, positive_examples, negative_examples in examples:
    for ex in positive_examples:
      checker(ex, type_, True)
      grad(checker)(ex, type_, True)

    for ex in negative_examples:
      checker(ex, type_, False)
      grad(checker)(ex, type_, False) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:21,代碼來源:test_builtins.py

示例2: optimize

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import ndarray [as 別名]
def optimize(self, angles0, target):
        """Calculate an optimum argument of an objective function."""
        def new_objective(angles):
            a = angles - angles0
            if isinstance(self.smooth_factor, (np.ndarray, list)):
                if len(a) == len(self.smooth_factor):
                    return (self.f(angles, target) +
                            np.sum(self.smooth_factor * np.power(a, 2)))
                else:
                    raise ValueError('len(smooth_factor) != number of joints')
            else:
                return (self.f(angles, target) +
                        self.smooth_factor * np.sum(np.power(a, 2)))

        return scipy.optimize.minimize(
            new_objective,
            angles0,
            **self.optimizer_opt).x 
開發者ID:lanius,項目名稱:tinyik,代碼行數:20,代碼來源:optimizer.py

示例3: __init__

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import ndarray [as 別名]
def __init__(self, tokens, optimizer=ScipyOptimizer()):
        """Create an actuator from specified link lengths and joint axes."""
        components = []
        for t in tokens:
            if isinstance(t, Number):
                components.append(Link([t, 0., 0.]))
            elif isinstance(t, list) or isinstance(t, np.ndarray):
                components.append(Link(t))
            elif isinstance(t, str) and t in {'x', 'y', 'z'}:
                components.append(Joint(t))
            else:
                raise ValueError(
                    'the arguments need to be '
                    'link length or joint axis: {}'.format(t)
                )

        self.fk = FKSolver(components)
        self.ik = IKSolver(self.fk, optimizer)

        self.angles = [0.] * len(
            [c for c in components if isinstance(c, Joint)]
        )
        self.components = components 
開發者ID:lanius,項目名稱:tinyik,代碼行數:25,代碼來源:core.py

示例4: __init__

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import ndarray [as 別名]
def __init__(self, tokens, optimizer=ScipyOptimizer()):
        """Create an actuator from specified link lengths and joint axes."""
        components = []
        for t in tokens:
            if isinstance(t, Number):
                components.append(Link([t, 0., 0.]))
            elif isinstance(t, list) or isinstance(t, np.ndarray):
                components.append(Link(t))
            elif isinstance(t, str) and t in {'x', 'y', 'z'}:
                components.append(Joint(t))
            else:
                raise ValueError(
                    'the arguments need to be '
                    'link length or joint axis: {}'.format(t)
                )

        self._fk = FKSolver(components)
        self._ik = IKSolver(self._fk, optimizer)

        self.angles = [0.] * len(
            [c for c in components if isinstance(c, Joint)]
        ) 
開發者ID:llSourcell,項目名稱:Robotic_Manipulation,代碼行數:24,代碼來源:core.py

示例5: _data

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import ndarray [as 別名]
def _data(self):
        return self.view(np.ndarray)


# autograd needs to consider Parameter a class that in can compute gradients for
# in that regard, it behaves like an ordinary ndarray 
開發者ID:pmelchior,項目名稱:scarlet,代碼行數:8,代碼來源:parameter.py

示例6: add_data

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import ndarray [as 別名]
def add_data(self, S, F=None):
        """
        Add a data set to the list of observations.
        First, filter the data with the impulse response basis,
        then instantiate a set of parents for this data set.

        :param S: a TxK matrix of of event counts for each time bin
                  and each process.
        """
        assert isinstance(S, np.ndarray) and S.ndim == 2 and S.shape[1] == self.K \
               and np.amin(S) >= 0 and S.dtype == np.int, \
               "Data must be a TxK array of event counts"

        T = S.shape[0]

        if F is None:
            # Filter the data into a TxKxB array
            Ftens = self.basis.convolve_with_basis(S)

            # Flatten this into a T x (KxB) matrix
            # [F00, F01, F02, F10, F11, ... F(K-1)0, F(K-1)(B-1)]
            F = Ftens.reshape((T, self.K * self.B))
            assert np.allclose(F[:,0], Ftens[:,0,0])
            if self.B > 1:
                assert np.allclose(F[:,1], Ftens[:,0,1])
            if self.K > 1:
                assert np.allclose(F[:,self.B], Ftens[:,1,0])

            # Prepend a column of ones
            F = np.hstack((np.ones((T,1)), F))

        for k,node in enumerate(self.nodes):
            node.add_data(F, S[:,k]) 
開發者ID:slinderman,項目名稱:pyhawkes,代碼行數:35,代碼來源:standard_models.py

示例7: __new__

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import ndarray [as 別名]
def __new__(cls, input_array, *args, requires_grad=True, **kwargs):
        obj = _np.array(input_array, *args, **kwargs)

        if isinstance(obj, _np.ndarray):
            obj = obj.view(cls)
            obj.requires_grad = requires_grad

        return obj 
開發者ID:XanaduAI,項目名稱:pennylane,代碼行數:10,代碼來源:tensor.py

示例8: _iscomplex

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import ndarray [as 別名]
def _iscomplex(x):
    """ Checks if x is complex-valued or not """
    if isinstance(x, npa.ndarray):
        if x.dtype == npa.complex128:
            return True
    if isinstance(x, complex):
        return True
    return False 
開發者ID:fancompute,項目名稱:ceviche,代碼行數:10,代碼來源:jacobians.py

示例9: _convert_bounds

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import ndarray [as 別名]
def _convert_bounds(bounds, shapes):
    output_bounds = []
    for shape, bound in zip(shapes, bounds):
        # Check is the bound is already parsable by scipy.optimize
        b = bound[0]
        if isinstance(b, (list, tuple, np.ndarray)):
            output_bounds += bound
        else:
            output_bounds += [bound, ] * np.prod(shape)
    return output_bounds 
開發者ID:pierreablin,項目名稱:autoptim,代碼行數:12,代碼來源:autoptim.py

示例10: match

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import ndarray [as 別名]
def match(self, model_frame, diff_kernels=None, convolution="fft"):
        """Match the frame of `Blend` to the frame of this observation.

        The method sets up the mappings in spectral and spatial coordinates,
        which includes a spatial selection, computing PSF difference kernels
        and filter transformations.

        Parameters
        ---------
        model_frame: a `scarlet.Frame` instance
            The frame of `Blend` to match
        diff_kernels: array
            The difference kernel for each band.
            If `diff_kernels` is `None` then they are
            calculated automatically.
        convolution: str
            The type of convolution to use.
            - `real`: Use a real space convolution and gradient
            - `fft`: Use a DFT to do the convolution and gradient

        Returns
        -------
        None
        """
        self.model_frame = model_frame
        if model_frame.channels is not None and self.frame.channels is not None:
            channel_origin = list(model_frame.channels).index(self.frame.channels[0])
            self.frame.origin = (channel_origin, *self.frame.origin[1:])

        slices = overlapped_slices(self.frame, model_frame)
        self.slices_for_images = slices[0] # Slice of images to match the model
        self.slices_for_model = slices[1] #  Slice of model that overlaps with the observation

        # check dtype consistency
        if self.frame.dtype != model_frame.dtype:
            self.frame.dtype = model_frame.dtype
            self.images = self.images.copy().astype(model_frame.dtype)
            if type(self.weights) is np.ndarray:
                self.weights = self.weights.copy().astype(model_frame.dtype)

        # constrcut diff kernels
        if diff_kernels is None:
            self._diff_kernels = None
            if self.frame.psf is not model_frame.psf:
                assert self.frame.psf is not None and model_frame.psf is not None
                psf = fft.Fourier(self.frame.psf.update_dtype(model_frame.dtype).image)
                model_psf = fft.Fourier(
                    model_frame.psf.update_dtype(model_frame.dtype).image
                )
                self._diff_kernels = fft.match_psfs(psf, model_psf)
        else:
            if not isinstance(diff_kernels, fft.Fourier):
                diff_kernels = fft.Fourier(diff_kernels)
            self._diff_kernels = diff_kernels

        # initialize the filter window
        assert convolution in ["real", "fft"], "`convolution` must be either 'real' or 'fft'"
        self.convolution = convolution
        return self 
開發者ID:pmelchior,項目名稱:scarlet,代碼行數:61,代碼來源:observation.py

示例11: tensor_wrapper

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import ndarray [as 別名]
def tensor_wrapper(obj):
    """Decorator that wraps callable objects and classes so that they both accept
    a ``requires_grad`` keyword argument, as well as returning a PennyLane
    :class:`~.tensor`.

    Only if the decorated object returns an ``ndarray`` is the
    output converted to a :class:`~.tensor`; this avoids superfluous conversion
    of scalars and other native-Python types.

    Args:
        obj: a callable object or class
    """

    @functools.wraps(obj)
    def _wrapped(*args, **kwargs):
        """Wrapped NumPy function"""

        tensor_kwargs = {}

        if "requires_grad" in kwargs:
            tensor_kwargs["requires_grad"] = kwargs.pop("requires_grad")
        else:
            tensor_args = list(extract_tensors(args))

            if tensor_args:
                # Unless the user specifies otherwise, if all tensors in the argument
                # list are non-trainable, the output is also non-trainable.
                # Equivalently: if any tensor is trainable, the output is also trainable.
                # NOTE: Use of Python's ``any`` results in an infinite recursion,
                # and I'm not sure why. Using ``np.any`` works fine.
                tensor_kwargs["requires_grad"] = _np.any([i.requires_grad for i in tensor_args])

        # evaluate the original object
        res = obj(*args, **kwargs)

        if isinstance(res, _np.ndarray):
            # only if the output of the object is a ndarray,
            # then convert to a PennyLane tensor
            res = tensor(res, **tensor_kwargs)

        return res

    return _wrapped 
開發者ID:XanaduAI,項目名稱:pennylane,代碼行數:45,代碼來源:wrapper.py

示例12: _get_dot_func

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import ndarray [as 別名]
def _get_dot_func(interface, x=None):
    """Helper function for :func:`~.dot` to determine
    the correct dot product function depending on the QNodeCollection
    interface.

    Args:
        interface (str): the interface to get the dot product function for
        x (Sequence): A non-QNodeCollection sequence. If it isn't the correct
            type for the interface, it is automatically converted.

    Returns:
        tuple[callable, Sequence or torch.Tensor or tf.Variable]: a tuple
        containing the required dot product function, as well as the
        (potentially converted) sequence.
    """
    if interface == "tf":
        import tensorflow as tf

        if x is not None and not isinstance(x, (tf.Tensor, tf.Variable)):
            x = tf.Variable(x, dtype=tf.float64)

        return lambda a, b: tf.tensordot(a, b, 1), x

    if interface == "torch":
        import torch

        if x is not None and not isinstance(x, torch.Tensor):
            x = torch.tensor(x, dtype=torch.float64)

        return torch.matmul, x

    if interface in ("autograd", "numpy"):
        from autograd import numpy as np

        if x is not None and not isinstance(x, np.ndarray):
            x = np.array(x)

        return np.dot, x

    if interface is None:
        import numpy as np

        return np.dot, x

    raise ValueError("Unknown interface {}".format(interface)) 
開發者ID:XanaduAI,項目名稱:pennylane,代碼行數:47,代碼來源:dot.py


注:本文中的autograd.numpy.ndarray方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。