當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.min方法代碼示例

本文整理匯總了Python中autograd.numpy.min方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.min方法的具體用法?Python numpy.min怎麽用?Python numpy.min使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在autograd.numpy的用法示例。


在下文中一共展示了numpy.min方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_thickness_at_chord_fraction_legacy

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import min [as 別名]
def get_thickness_at_chord_fraction_legacy(self, chord_fraction):
        # Returns the (interpolated) camber at a given location(s). The location is specified by the chord fraction, as measured from the leading edge. Thickness is nondimensionalized by chord (i.e. this function returns t/c at a given x/c).
        chord = np.max(self.coordinates[:, 0]) - np.min(
            self.coordinates[:, 0])  # This should always be 1, but this is just coded for robustness.

        x = chord_fraction * chord + min(self.coordinates[:, 0])

        upperCoors = self.upper_coordinates()
        lowerCoors = self.lower_coordinates()

        y_upper_func = sp_interp.interp1d(x=upperCoors[:, 0], y=upperCoors[:, 1], copy=False, fill_value='extrapolate')
        y_lower_func = sp_interp.interp1d(x=lowerCoors[:, 0], y=lowerCoors[:, 1], copy=False, fill_value='extrapolate')

        y_upper = y_upper_func(x)
        y_lower = y_lower_func(x)

        thickness = np.maximum(y_upper - y_lower, 0)

        return thickness 
開發者ID:peterdsharpe,項目名稱:AeroSandbox,代碼行數:21,代碼來源:geometry.py

示例2: get_camber_at_chord_fraction_legacy

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import min [as 別名]
def get_camber_at_chord_fraction_legacy(self, chord_fraction):
        # Returns the (interpolated) camber at a given location(s). The location is specified by the chord fraction, as measured from the leading edge. Camber is nondimensionalized by chord (i.e. this function returns camber/c at a given x/c).
        chord = np.max(self.coordinates[:, 0]) - np.min(
            self.coordinates[:, 0])  # This should always be 1, but this is just coded for robustness.

        x = chord_fraction * chord + min(self.coordinates[:, 0])

        upperCoors = self.upper_coordinates()
        lowerCoors = self.lower_coordinates()

        y_upper_func = sp_interp.interp1d(x=upperCoors[:, 0], y=upperCoors[:, 1], copy=False, fill_value='extrapolate')
        y_lower_func = sp_interp.interp1d(x=lowerCoors[:, 0], y=lowerCoors[:, 1], copy=False, fill_value='extrapolate')

        y_upper = y_upper_func(x)
        y_lower = y_lower_func(x)

        camber = (y_upper + y_lower) / 2

        return camber 
開發者ID:peterdsharpe,項目名稱:AeroSandbox,代碼行數:21,代碼來源:geometry.py

示例3: plot_images

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import min [as 別名]
def plot_images(images, ax, ims_per_row=5, padding=5, digit_dimensions=(28, 28),
                cmap=matplotlib.cm.binary, vmin=None, vmax=None):
    """Images should be a (N_images x pixels) matrix."""
    N_images = images.shape[0]
    N_rows = (N_images - 1) // ims_per_row + 1
    pad_value = np.min(images.ravel())
    concat_images = np.full(((digit_dimensions[0] + padding) * N_rows + padding,
                             (digit_dimensions[1] + padding) * ims_per_row + padding), pad_value)
    for i in range(N_images):
        cur_image = np.reshape(images[i, :], digit_dimensions)
        row_ix = i // ims_per_row
        col_ix = i % ims_per_row
        row_start = padding + (padding + digit_dimensions[0]) * row_ix
        col_start = padding + (padding + digit_dimensions[1]) * col_ix
        concat_images[row_start: row_start + digit_dimensions[0],
                      col_start: col_start + digit_dimensions[1]] = cur_image
    cax = ax.matshow(concat_images, cmap=cmap, vmin=vmin, vmax=vmax)
    plt.xticks(np.array([]))
    plt.yticks(np.array([]))
    return cax 
開發者ID:HIPS,項目名稱:autograd,代碼行數:22,代碼來源:data.py

示例4: bound_by_data

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import min [as 別名]
def bound_by_data(Z, Data):
    """
    Determine lower and upper bound for each dimension from the Data, and project 
    Z so that all points in Z live in the bounds.

    Z: m x d 
    Data: n x d

    Return a projected Z of size m x d.
    """
    n, d = Z.shape
    Low = np.min(Data, 0)
    Up = np.max(Data, 0)
    LowMat = np.repeat(Low[np.newaxis, :], n, axis=0)
    UpMat = np.repeat(Up[np.newaxis, :], n, axis=0)

    Z = np.maximum(LowMat, Z)
    Z = np.minimum(UpMat, Z)
    return Z 
開發者ID:wittawatj,項目名稱:kernel-gof,代碼行數:21,代碼來源:util.py

示例5: get_starlet_shape

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import min [as 別名]
def get_starlet_shape(shape, lvl = None):
    """ Get the pad shape for a starlet transform
    """
    #Number of levels for the Starlet decomposition
    lvl_max = np.int(np.log2(np.min(shape[-2:])))
    if (lvl is None) or lvl > lvl_max:
        lvl = lvl_max
    return lvl 
開發者ID:pmelchior,項目名稱:scarlet,代碼行數:10,代碼來源:wavelet.py

示例6: my_t_test

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import min [as 別名]
def my_t_test(labels, theoretical, observed, min_samples=25):

    assert theoretical.ndim == 1 and observed.ndim == 2
    assert len(theoretical) == observed.shape[
        0] and len(theoretical) == len(labels)

    n_observed = np.sum(observed > 0, axis=1)
    theoretical, observed = theoretical[
        n_observed > min_samples], observed[n_observed > min_samples, :]
    labels = np.array(list(map(str, labels)))[n_observed > min_samples]
    n_observed = n_observed[n_observed > min_samples]

    runs = observed.shape[1]
    observed_mean = np.mean(observed, axis=1)
    bias = observed_mean - theoretical
    variances = np.var(observed, axis=1)

    t_vals = bias / np.sqrt(variances) * np.sqrt(runs)

    # get the p-values
    abs_t_vals = np.abs(t_vals)
    p_vals = 2.0 * scipy.stats.t.sf(abs_t_vals, df=runs - 1)
    print("# labels, p-values, empirical-mean, theoretical-mean, nonzero-counts")
    toPrint = np.array([labels, p_vals, observed_mean,
                        theoretical, n_observed]).transpose()
    toPrint = toPrint[np.array(toPrint[:, 1], dtype='float').argsort()[
        ::-1]]  # reverse-sort by p-vals
    print(toPrint)

    print("Note p-values are for t-distribution, which may not be a good approximation to the true distribution")

    # p-values should be uniformly distributed
    # so then the min p-value should be beta distributed
    return scipy.stats.beta.cdf(np.min(p_vals), 1, len(p_vals)) 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:36,代碼來源:test_msprime.py

示例7: get_sharp_TE_airfoil

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import min [as 別名]
def get_sharp_TE_airfoil(self):
        # Returns a version of the airfoil with a sharp trailing edge.

        upper_original_coors = self.upper_coordinates()  # Note: includes leading edge point, be careful about duplicates
        lower_original_coors = self.lower_coordinates()  # Note: includes leading edge point, be careful about duplicates

        # Find data about the TE

        # Get the scale factor
        x_mcl = self.mcl_coordinates[:, 0]
        x_max = np.max(x_mcl)
        x_min = np.min(x_mcl)
        scale_factor = (x_mcl - x_min) / (x_max - x_min)  # linear contraction

        # Do the contraction
        upper_minus_mcl_adjusted = self.upper_minus_mcl - self.upper_minus_mcl[-1, :] * np.expand_dims(scale_factor, 1)

        # Recreate coordinates
        upper_coordinates_adjusted = np.flipud(self.mcl_coordinates + upper_minus_mcl_adjusted)
        lower_coordinates_adjusted = self.mcl_coordinates - upper_minus_mcl_adjusted

        coordinates = np.vstack((
            upper_coordinates_adjusted[:-1, :],
            lower_coordinates_adjusted
        ))

        # Make a new airfoil with the coordinates
        name = self.name + ", with sharp TE"
        new_airfoil = Airfoil(name=name, coordinates=coordinates, repanel=False)

        return new_airfoil 
開發者ID:peterdsharpe,項目名稱:AeroSandbox,代碼行數:33,代碼來源:geometry.py

示例8: cosspace

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import min [as 別名]
def cosspace(min=0, max=1, n_points=50):
    mean = (max + min) / 2
    amp = (max - min) / 2

    return mean + amp * np.cos(np.linspace(np.pi, 0, n_points)) 
開發者ID:peterdsharpe,項目名稱:AeroSandbox,代碼行數:7,代碼來源:geometry.py

示例9: test_min

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import min [as 別名]
def test_min():  stat_check(np.min) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:3,代碼來源:test_systematic.py

示例10: test_min

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import min [as 別名]
def test_min():
    def fun(x): return np.min(x)
    mat = npr.randn(10, 11)
    check_grads(fun)(mat) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:6,代碼來源:test_numpy.py

示例11: test_min_axis

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import min [as 別名]
def test_min_axis():
    def fun(x): return np.min(x, axis=1)
    mat = npr.randn(3, 4, 5)
    check_grads(fun)(mat) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:6,代碼來源:test_numpy.py

示例12: test_min_axis_keepdims

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import min [as 別名]
def test_min_axis_keepdims():
    def fun(x): return np.min(x, axis=1, keepdims=True)
    mat = npr.randn(3, 4, 5)
    check_grads(fun)(mat) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:6,代碼來源:test_numpy.py

示例13: constrain

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import min [as 別名]
def constrain(val, min_val, max_val):
    return min(max_val, max(min_val, val)) 
開發者ID:wittawatj,項目名稱:kernel-gof,代碼行數:4,代碼來源:util.py

示例14: meddistance

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import min [as 別名]
def meddistance(X, subsample=None, mean_on_fail=True):
    """
    Compute the median of pairwise distances (not distance squared) of points
    in the matrix.  Useful as a heuristic for setting Gaussian kernel's width.

    Parameters
    ----------
    X : n x d numpy array
    mean_on_fail: True/False. If True, use the mean when the median distance is 0.
        This can happen especially, when the data are discrete e.g., 0/1, and 
        there are more slightly more 0 than 1. In this case, the m

    Return
    ------
    median distance
    """
    if subsample is None:
        D = dist_matrix(X, X)
        Itri = np.tril_indices(D.shape[0], -1)
        Tri = D[Itri]
        med = np.median(Tri)
        if med <= 0:
            # use the mean
            return np.mean(Tri)
        return med

    else:
        assert subsample > 0
        rand_state = np.random.get_state()
        np.random.seed(9827)
        n = X.shape[0]
        ind = np.random.choice(n, min(subsample, n), replace=False)
        np.random.set_state(rand_state)
        # recursion just one
        return meddistance(X[ind, :], None, mean_on_fail) 
開發者ID:wittawatj,項目名稱:kernel-gof,代碼行數:37,代碼來源:util.py

示例15: plot_runtime

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import min [as 別名]
def plot_runtime(ex, fname, func_xvalues, xlabel, func_title=None):
    results = glo.ex_load_result(ex, fname)
    value_accessor = lambda job_results: job_results['time_secs']
    vf_pval = np.vectorize(value_accessor)
    # results['job_results'] is a dictionary: 
    # {'test_result': (dict from running perform_test(te) '...':..., }
    times = vf_pval(results['job_results'])
    repeats, _, n_methods = results['job_results'].shape
    time_avg = np.mean(times, axis=0)
    time_std = np.std(times, axis=0)

    xvalues = func_xvalues(results)

    #ns = np.array(results[xkey])
    #te_proportion = 1.0 - results['tr_proportion']
    #test_sizes = ns*te_proportion
    line_styles = func_plot_fmt_map()
    method_labels = get_func2label_map()
    
    func_names = [f.__name__ for f in results['method_job_funcs'] ]
    for i in range(n_methods):    
        te_proportion = 1.0 - results['tr_proportion']
        fmt = line_styles[func_names[i]]
        #plt.errorbar(ns*te_proportion, mean_rejs[:, i], std_pvals[:, i])
        method_label = method_labels[func_names[i]]
        plt.errorbar(xvalues, time_avg[:, i], yerr=time_std[:,i], fmt=fmt,
                label=method_label)
            
    ylabel = 'Time (s)'
    plt.ylabel(ylabel)
    plt.xlabel(xlabel)
    plt.xlim([np.min(xvalues), np.max(xvalues)])
    plt.xticks( xvalues, xvalues )
    plt.legend(loc='best')
    plt.gca().set_yscale('log')
    title = '%s. %d trials. '%( results['prob_label'],
            repeats ) if func_title is None else func_title(results)
    plt.title(title)
    #plt.grid()
    return results 
開發者ID:wittawatj,項目名稱:kernel-gof,代碼行數:42,代碼來源:plot.py


注:本文中的autograd.numpy.min方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。