當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.maximum方法代碼示例

本文整理匯總了Python中autograd.numpy.maximum方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.maximum方法的具體用法?Python numpy.maximum怎麽用?Python numpy.maximum使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在autograd.numpy的用法示例。


在下文中一共展示了numpy.maximum方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: truncate0

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import maximum [as 別名]
def truncate0(x, axis=None, strict=False, tol=1e-13):
    '''make sure everything in x is non-negative'''
    # the maximum along axis
    maxes = np.maximum(np.amax(x, axis=axis), 1e-300)
    # the negative part of minimum along axis
    mins = np.maximum(-np.amin(x, axis=axis), 0.0)

    # assert the negative numbers are small (relative to maxes)
    assert np.all(mins <= tol * maxes)

    if axis is not None:
        idx = [slice(None)] * x.ndim
        idx[axis] = np.newaxis
        mins = mins[idx]
        maxes = maxes[idx]

    if strict:
        # set everything below the tolerance to 0
        return set0(x, x < tol * maxes)
    else:
        # set everything of same magnitude as most negative number, to 0
        return set0(x, x < 2 * mins) 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:24,代碼來源:util.py

示例2: _composite_log_likelihood

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import maximum [as 別名]
def _composite_log_likelihood(data, demo, mut_rate=None, truncate_probs=0.0, vector=False, p_missing=None, use_pairwise_diffs=False, **kwargs):
    try:
        sfs = data.sfs
    except AttributeError:
        sfs = data

    sfs_probs = np.maximum(expected_sfs(demo, sfs.configs, normalized=True, **kwargs),
                           truncate_probs)
    log_lik = sfs._integrate_sfs(np.log(sfs_probs), vector=vector)

    # add on log likelihood of poisson distribution for total number of SNPs
    if mut_rate is not None:
        log_lik = log_lik + \
            _mut_factor(sfs, demo, mut_rate, vector,
                        p_missing, use_pairwise_diffs)

    if not vector:
        log_lik = np.squeeze(log_lik)
    return log_lik 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:21,代碼來源:likelihood.py

示例3: get_thickness_at_chord_fraction_legacy

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import maximum [as 別名]
def get_thickness_at_chord_fraction_legacy(self, chord_fraction):
        # Returns the (interpolated) camber at a given location(s). The location is specified by the chord fraction, as measured from the leading edge. Thickness is nondimensionalized by chord (i.e. this function returns t/c at a given x/c).
        chord = np.max(self.coordinates[:, 0]) - np.min(
            self.coordinates[:, 0])  # This should always be 1, but this is just coded for robustness.

        x = chord_fraction * chord + min(self.coordinates[:, 0])

        upperCoors = self.upper_coordinates()
        lowerCoors = self.lower_coordinates()

        y_upper_func = sp_interp.interp1d(x=upperCoors[:, 0], y=upperCoors[:, 1], copy=False, fill_value='extrapolate')
        y_lower_func = sp_interp.interp1d(x=lowerCoors[:, 0], y=lowerCoors[:, 1], copy=False, fill_value='extrapolate')

        y_upper = y_upper_func(x)
        y_lower = y_lower_func(x)

        thickness = np.maximum(y_upper - y_lower, 0)

        return thickness 
開發者ID:peterdsharpe,項目名稱:AeroSandbox,代碼行數:21,代碼來源:geometry.py

示例4: is_a_scores_vector_batch

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import maximum [as 別名]
def is_a_scores_vector_batch(self, K, parent_vectors, other_vectors, rel_reversed):
        norm_parents = np.linalg.norm(parent_vectors, axis=1)
        norms_other = np.linalg.norm(other_vectors, axis=1)
        euclidean_dists = np.maximum(np.linalg.norm(parent_vectors - other_vectors, axis=1), 1e-6) # To avoid the fact that parent can be equal to child for the reconstruction experiment

        if not rel_reversed:
            cos_angles_child = (norms_other**2 - norm_parents**2 - euclidean_dists**2) / (2 * euclidean_dists * norm_parents) # 1 + neg_size
            angles_psi_parent = np.arcsin(K / norm_parents) # scalar
        else:
            cos_angles_child = (norm_parents**2 - norms_other**2 - euclidean_dists**2) / (2 * euclidean_dists * norms_other) # 1 + neg_size
            angles_psi_parent = np.arcsin(K / norms_other) # 1 + neg_size

        assert not np.isnan(cos_angles_child).any()
        clipped_cos_angle_child = np.maximum(cos_angles_child, -1 + EPS)
        clipped_cos_angle_child = np.minimum(clipped_cos_angle_child, 1 - EPS)
        angles_child = np.arccos(clipped_cos_angle_child)  # (1 + neg_size, batch_size)

        return np.maximum(0, angles_child - angles_psi_parent) 
開發者ID:dalab,項目名稱:hyperbolic_cones,代碼行數:20,代碼來源:eucl_cones_model.py

示例5: fit_gaussian_draw

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import maximum [as 別名]
def fit_gaussian_draw(X, J, seed=28, reg=1e-7, eig_pow=1.0):
    """
    Fit a multivariate normal to the data X (n x d) and draw J points 
    from the fit. 
    - reg: regularizer to use with the covariance matrix
    - eig_pow: raise eigenvalues of the covariance matrix to this power to construct 
        a new covariance matrix before drawing samples. Useful to shrink the spread 
        of the variance.
    """
    with NumpySeedContext(seed=seed):
        d = X.shape[1]
        mean_x = np.mean(X, 0)
        cov_x = np.cov(X.T)
        if d==1:
            cov_x = np.array([[cov_x]])
        [evals, evecs] = np.linalg.eig(cov_x)
        evals = np.maximum(0, np.real(evals))
        assert np.all(np.isfinite(evals))
        evecs = np.real(evecs)
        shrunk_cov = evecs.dot(np.diag(evals**eig_pow)).dot(evecs.T) + reg*np.eye(d)
        V = np.random.multivariate_normal(mean_x, shrunk_cov, J)
    return V 
開發者ID:wittawatj,項目名稱:kernel-gof,代碼行數:24,代碼來源:util.py

示例6: bound_by_data

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import maximum [as 別名]
def bound_by_data(Z, Data):
    """
    Determine lower and upper bound for each dimension from the Data, and project 
    Z so that all points in Z live in the bounds.

    Z: m x d 
    Data: n x d

    Return a projected Z of size m x d.
    """
    n, d = Z.shape
    Low = np.min(Data, 0)
    Up = np.max(Data, 0)
    LowMat = np.repeat(Low[np.newaxis, :], n, axis=0)
    UpMat = np.repeat(Up[np.newaxis, :], n, axis=0)

    Z = np.maximum(LowMat, Z)
    Z = np.minimum(UpMat, Z)
    return Z 
開發者ID:wittawatj,項目名稱:kernel-gof,代碼行數:21,代碼來源:util.py

示例7: avg_pairwise_hets

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import maximum [as 別名]
def avg_pairwise_hets(self):
        # avg number of hets per ind per pop (assuming Hardy-Weinberg)
        n_nonmissing = np.sum(self.configs.value, axis=2)
        # for denominator, assume 1 allele is drawn from whole sample, and 1
        # allele is drawn only from nomissing alleles
        denoms = np.maximum(n_nonmissing * (self.sampled_n - 1), 1.0)
        p_het = 2 * self.configs.value[:, :, 0] * \
            self.configs.value[:, :, 1] / denoms

        return self.freqs_matrix.T.dot(p_het) 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:12,代碼來源:sfs.py

示例8: sgd

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import maximum [as 別名]
def sgd(fun, x0, fun_and_jac, pieces, stepsize, num_iters, bounds=None, callback=None, iter_per_output=10, rgen=np.random):
    x0 = np.array(x0)

    if callback is None:
        callback = lambda *a, **kw: None

    if bounds is None:
        bounds = [(None, None) for _ in x0]
    lower, upper = zip(*bounds)
    lower = [-float('inf') if l is None else l
             for l in lower]
    upper = [float('inf') if u is None else u
             for u in upper]

    def truncate(x):
        return np.maximum(np.minimum(x, upper), lower)

    x = x0
    for nit in range(num_iters):
        i = rgen.randint(pieces)
        f_x, g_x = fun_and_jac(x, i)
        x = truncate(x - stepsize * g_x)
        if nit % iter_per_output == 0:
            callback(x, f_x, nit)

    return scipy.optimize.OptimizeResult({'x': x, 'fun': f_x, 'jac': g_x}) 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:28,代碼來源:optimizers.py

示例9: _compute_loss

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import maximum [as 別名]
def _compute_loss(self):
        """Compute and store loss value for the given batch of examples."""
        if self._loss_computed:
            return
        self._loss_computed = True

        self.euclidean_dists = np.linalg.norm(self.vectors_u - self.vectors_v, axis=1)  # (1 + neg_size, batch_size)
        euclidean_dists_sq = self.euclidean_dists ** 2

        if not self.rels_reversed:
            # (1 + neg_size, batch_size)
            child_numerator = self.norms_v_sq - self.norms_u_sq - euclidean_dists_sq
            self.child_numitor = 2 * self.euclidean_dists * self.norms_u
            self.angles_psi_parent = np.arcsin(self.K / self.norms_u) # (1, batch_size)

        else:
            # (1 + neg_size, batch_size)
            child_numerator = self.norms_u_sq - self.norms_v_sq - euclidean_dists_sq
            self.child_numitor = 2 * self.euclidean_dists * self.norms_v
            self.angles_psi_parent = np.arcsin(self.K / self.norms_v) # (1 + neg_size, batch_size)

        self.cos_angles_child = child_numerator / self.child_numitor
        # To avoid numerical errors
        self.clipped_cos_angle_child = np.maximum(self.cos_angles_child, -1 + EPS)
        self.clipped_cos_angle_child = np.minimum(self.clipped_cos_angle_child, 1 - EPS)
        self.angles_child = np.arccos(self.clipped_cos_angle_child)  # (1 + neg_size, batch_size)

        self.angle_diff = self.angles_child - self.angles_psi_parent
        self.energy_vec = np.maximum(0, self.angle_diff) # (1 + neg_size, batch_size)
        self.pos_loss = self.energy_vec[0].sum()
        self.neg_loss = np.maximum(0, self.margin - self.energy_vec[1:]).sum()
        self.loss = self.pos_loss + self.neg_loss 
開發者ID:dalab,項目名稱:hyperbolic_cones,代碼行數:34,代碼來源:eucl_cones_model.py

示例10: _compute_loss

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import maximum [as 別名]
def _compute_loss(self):
        """Compute and store loss value for the given batch of examples."""
        if self._loss_computed:
            return
        self._loss_computed = True

        self.euclidean_dists = np.linalg.norm(self.vectors_u - self.vectors_v, axis=1)  # (1 + neg_size, batch_size)
        self.dot_prods = (self.vectors_u * self.vectors_v).sum(axis=1) # (1 + neg, batch_size)

        self.g = 1 + self.norms_v_sq * self.norms_u_sq - 2 * self.dot_prods
        self.g_sqrt = np.sqrt(self.g)

        self.euclidean_times_sqrt_g = self.euclidean_dists * self.g_sqrt

        if not self.rels_reversed:
            # u is x , v is y
            # (1 + neg_size, batch_size)
            child_numerator = self.dot_prods * (1 + self.norms_u_sq) - self.norms_u_sq * (1 + self.norms_v_sq)
            self.child_numitor = self.euclidean_times_sqrt_g * self.norms_u
            self.angles_psi_parent = np.arcsin(self.K * self.one_minus_norms_sq_u / self.norms_u) # (1, batch_size)

        else:
            # v is x , u is y
            # (1 + neg_size, batch_size)
            child_numerator = self.dot_prods * (1 + self.norms_v_sq) - self.norms_v_sq * (1 + self.norms_u_sq)
            self.child_numitor = self.euclidean_times_sqrt_g * self.norms_v
            self.angles_psi_parent = np.arcsin(self.K * self.one_minus_norms_sq_v / self.norms_v) # (1, batch_size)

        self.cos_angles_child = child_numerator / self.child_numitor
        # To avoid numerical errors
        self.clipped_cos_angle_child = np.maximum(self.cos_angles_child, -1 + EPS)
        self.clipped_cos_angle_child = np.minimum(self.clipped_cos_angle_child, 1 - EPS)
        self.angles_child = np.arccos(self.clipped_cos_angle_child)  # (1 + neg_size, batch_size)

        self.angle_diff = self.angles_child - self.angles_psi_parent
        self.energy_vec = np.maximum(0, self.angle_diff) # (1 + neg_size, batch_size)
        self.pos_loss = self.energy_vec[0].sum()
        self.neg_loss = np.maximum(0, self.margin - self.energy_vec[1:]).sum()
        self.loss = self.pos_loss + self.neg_loss 
開發者ID:dalab,項目名稱:hyperbolic_cones,代碼行數:41,代碼來源:hyp_cones_model.py

示例11: _loss_fn

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import maximum [as 別名]
def _loss_fn(self, matrix, rels_reversed):
        """Given a numpy array with vectors for u, v and negative samples, computes loss value.

        Parameters
        ----------
        matrix : numpy.array
            Array containing vectors for u, v and negative samples, of shape (2 + negative_size, dim).
        rels_reversed : bool

        Returns
        -------
        float
            Computed loss value.

        Warnings
        --------
        Only used for autograd gradients, since autograd requires a specific function signature.
        """
        vector_u = matrix[0]
        vectors_v = matrix[1:]
        if not rels_reversed:
            entailment_penalty = grad_np.maximum(0, vector_u - vectors_v) # (1 + negative_size, dim).
        else:
            entailment_penalty = grad_np.maximum(0, - vector_u + vectors_v) # (1 + negative_size, dim).

        energy_vec = grad_np.linalg.norm(entailment_penalty, axis=1) ** 2
        positive_term = energy_vec[0]
        negative_terms = energy_vec[1:]
        return positive_term + grad_np.maximum(0, self.margin - negative_terms).sum() 
開發者ID:dalab,項目名稱:hyperbolic_cones,代碼行數:31,代碼來源:order_emb_model.py

示例12: _compute_loss

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import maximum [as 別名]
def _compute_loss(self):
        """Compute and store loss value for the given batch of examples."""
        if self._loss_computed:
            return
        self._loss_computed = True

        if not self.rels_reversed:
            self.entailment_penalty = np.maximum(0, self.vectors_u - self.vectors_v) # (1 + negative_size, dim, batch_size).
        else:
            self.entailment_penalty = np.maximum(0, - self.vectors_u + self.vectors_v) # (1 + negative_size, dim, batch_size).

        self.energy_vec = np.linalg.norm(self.entailment_penalty, axis=1)**2 # (1 + negative_size, batch_size).
        self.pos_loss = self.energy_vec[0].sum()
        self.neg_loss = np.maximum(0, self.margin - self.energy_vec[1:]).sum()
        self.loss = self.pos_loss + self.neg_loss 
開發者ID:dalab,項目名稱:hyperbolic_cones,代碼行數:17,代碼來源:order_emb_model.py

示例13: is_a_scores_vector_batch

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import maximum [as 別名]
def is_a_scores_vector_batch(self, alpha, parent_vectors, other_vectors, rel_reversed):
        if not rel_reversed:
            return np.linalg.norm(np.maximum(0, parent_vectors - other_vectors), axis=1)
        else:
            return np.linalg.norm(np.maximum(0, - parent_vectors + other_vectors), axis=1) 
開發者ID:dalab,項目名稱:hyperbolic_cones,代碼行數:7,代碼來源:order_emb_model.py

示例14: _maxmargin_loss_fn

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import maximum [as 別名]
def _maxmargin_loss_fn(poincare_dists, maxmargin_margin):
        """
        Parameters
        ----------
        poincare_dists : numpy.array
            All distances d(u,v) and d(u,v'), where v' is negative. Shape (1 + negative_size).

        Returns
        ----------
        max-margin loss function: \sum_{v' \in N(u)} max(0, \gamma + d(u,v) - d(u,v'))
        """
        positive_term = poincare_dists[0]
        negative_terms = poincare_dists[1:]
        return grad_np.maximum(0, maxmargin_margin + positive_term - negative_terms).sum() 
開發者ID:dalab,項目名稱:hyperbolic_cones,代碼行數:16,代碼來源:poincare_model.py

示例15: _compute_loss

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import maximum [as 別名]
def _compute_loss(self):
        """Compute and store loss value for the given batch of examples."""
        if self._loss_computed:
            return
        self._compute_distances()

        if self.loss_type == 'nll':
            # NLL loss from the NIPS paper.
            exp_negative_distances = np.exp(-self.poincare_dists)  # (1 + neg_size, batch_size)
            # Remove the value for the true edge (u,v) from the partition function
            Z = exp_negative_distances[1:].sum(axis=0)  # (batch_size)
            self.exp_negative_distances = exp_negative_distances  # (1 + neg_size, batch_size)
            self.Z = Z # (batch_size)

            self.pos_loss = self.poincare_dists[0].sum()
            self.neg_loss = np.log(self.Z).sum()
            self.loss = self.pos_loss + self.neg_loss  # scalar

        elif self.loss_type == 'neg':
            # NEG loss function:
            # - log sigma((r - d(u,v)) / t) - \sum_{v' \in N(u)} log sigma((d(u,v') - r) / t)
            positive_term = np.log(1.0 + np.exp((- self.neg_r + self.poincare_dists[0]) / self.neg_t))  # (batch_size)
            negative_terms = self.neg_mu * \
                             np.log(1.0 + np.exp((self.neg_r - self.poincare_dists[1:]) / self.neg_t)) # (1 + neg_size, batch_size)

            self.pos_loss = positive_term.sum()
            self.neg_loss = negative_terms.sum()
            self.loss = self.pos_loss + self.neg_loss  # scalar

        elif self.loss_type == 'maxmargin':
            # max - margin loss function: \sum_{v' \in N(u)} max(0, \gamma + d(u,v) - d(u,v'))
            self.loss = np.maximum(0, self.maxmargin_margin + self.poincare_dists[0] - self.poincare_dists[1:]).sum() # scalar
            self.pos_loss = self.loss
            self.neg_loss = self.loss

        else:
            raise ValueError('Unknown loss type : ' + self.loss_type)

        self._loss_computed = True 
開發者ID:dalab,項目名稱:hyperbolic_cones,代碼行數:41,代碼來源:poincare_model.py


注:本文中的autograd.numpy.maximum方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。