當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.max方法代碼示例

本文整理匯總了Python中autograd.numpy.max方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.max方法的具體用法?Python numpy.max怎麽用?Python numpy.max使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在autograd.numpy的用法示例。


在下文中一共展示了numpy.max方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _evaluate

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import max [as 別名]
def _evaluate(self, x, out, *args, **kwargs):

        # variable names for convenient access
        x1 = x[:, 0]
        x2 = x[:, 1]
        y = x[:, 2]

        # first objectives
        f1 = x1 * anp.sqrt(16 + anp.square(y)) + x2 * anp.sqrt((1 + anp.square(y)))

        # measure which are needed for the second objective
        sigma_ac = 20 * anp.sqrt(16 + anp.square(y)) / (y * x1)
        sigma_bc = 80 * anp.sqrt(1 + anp.square(y)) / (y * x2)

        # take the max
        f2 = anp.max(anp.column_stack((sigma_ac, sigma_bc)), axis=1)

        # define a constraint
        g1 = f2 - self.Smax

        out["F"] = anp.column_stack([f1, f2])
        out["G"] = g1 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:24,代碼來源:truss2d.py

示例2: get_thickness_at_chord_fraction_legacy

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import max [as 別名]
def get_thickness_at_chord_fraction_legacy(self, chord_fraction):
        # Returns the (interpolated) camber at a given location(s). The location is specified by the chord fraction, as measured from the leading edge. Thickness is nondimensionalized by chord (i.e. this function returns t/c at a given x/c).
        chord = np.max(self.coordinates[:, 0]) - np.min(
            self.coordinates[:, 0])  # This should always be 1, but this is just coded for robustness.

        x = chord_fraction * chord + min(self.coordinates[:, 0])

        upperCoors = self.upper_coordinates()
        lowerCoors = self.lower_coordinates()

        y_upper_func = sp_interp.interp1d(x=upperCoors[:, 0], y=upperCoors[:, 1], copy=False, fill_value='extrapolate')
        y_lower_func = sp_interp.interp1d(x=lowerCoors[:, 0], y=lowerCoors[:, 1], copy=False, fill_value='extrapolate')

        y_upper = y_upper_func(x)
        y_lower = y_lower_func(x)

        thickness = np.maximum(y_upper - y_lower, 0)

        return thickness 
開發者ID:peterdsharpe,項目名稱:AeroSandbox,代碼行數:21,代碼來源:geometry.py

示例3: get_camber_at_chord_fraction_legacy

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import max [as 別名]
def get_camber_at_chord_fraction_legacy(self, chord_fraction):
        # Returns the (interpolated) camber at a given location(s). The location is specified by the chord fraction, as measured from the leading edge. Camber is nondimensionalized by chord (i.e. this function returns camber/c at a given x/c).
        chord = np.max(self.coordinates[:, 0]) - np.min(
            self.coordinates[:, 0])  # This should always be 1, but this is just coded for robustness.

        x = chord_fraction * chord + min(self.coordinates[:, 0])

        upperCoors = self.upper_coordinates()
        lowerCoors = self.lower_coordinates()

        y_upper_func = sp_interp.interp1d(x=upperCoors[:, 0], y=upperCoors[:, 1], copy=False, fill_value='extrapolate')
        y_lower_func = sp_interp.interp1d(x=lowerCoors[:, 0], y=lowerCoors[:, 1], copy=False, fill_value='extrapolate')

        y_upper = y_upper_func(x)
        y_lower = y_lower_func(x)

        camber = (y_upper + y_lower) / 2

        return camber 
開發者ID:peterdsharpe,項目名稱:AeroSandbox,代碼行數:21,代碼來源:geometry.py

示例4: accel_gradient

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import max [as 別名]
def accel_gradient(eps_arr, mode='max'):

    # set the permittivity of the FDFD and solve the fields
    F.eps_r = eps_arr.reshape((Nx, Ny))
    Ex, Ey, Hz = F.solve(source)

    # compute the gradient and normalize if you want
    G = npa.sum(Ey * eta / Ny)

    if mode == 'max':
        return -np.abs(G) / Emax(Ex, Ey, eps_r)
    elif mode == 'avg':
        return -np.abs(G) / Eavg(Ex, Ey)
    else:        
        return -np.abs(G / E0)

# define the gradient for autograd 
開發者ID:fancompute,項目名稱:ceviche,代碼行數:19,代碼來源:optimize_accelerator.py

示例5: bound_by_data

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import max [as 別名]
def bound_by_data(Z, Data):
    """
    Determine lower and upper bound for each dimension from the Data, and project 
    Z so that all points in Z live in the bounds.

    Z: m x d 
    Data: n x d

    Return a projected Z of size m x d.
    """
    n, d = Z.shape
    Low = np.min(Data, 0)
    Up = np.max(Data, 0)
    LowMat = np.repeat(Low[np.newaxis, :], n, axis=0)
    UpMat = np.repeat(Up[np.newaxis, :], n, axis=0)

    Z = np.maximum(LowMat, Z)
    Z = np.minimum(UpMat, Z)
    return Z 
開發者ID:wittawatj,項目名稱:kernel-gof,代碼行數:21,代碼來源:util.py

示例6: _decode_map

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import max [as 別名]
def _decode_map(self, data):  # adapted hmmlearn
        flp = self._compute_log_likelihood(data)
        flp_rep = np.zeros((flp.shape[0], self.n_components))
        for u in range(self.n_unique):
            for c in range(self.n_chain):
                flp_rep[:, u*self.n_chain+c] = flp[:, u]
        logprob, fwdlattice = self._do_forward_pass(flp_rep)
        bwdlattice = self._do_backward_pass(flp_rep)
        gamma = fwdlattice + bwdlattice
        # gamma is guaranteed to be correctly normalized by logprob at
        # all frames, unless we do approximate inference using pruning.
        # So, we will normalize each frame explicitly in case we
        # pruned too aggressively.
        posteriors = np.exp(gamma.T - logsumexp(gamma, axis=1)).T
        posteriors += np.finfo(np.float64).eps
        posteriors /= np.sum(posteriors, axis=1).reshape((-1, 1))
        state_sequence = np.argmax(posteriors, axis=1)
        map_logprob = np.max(posteriors, axis=1).sum()
        return map_logprob, state_sequence 
開發者ID:mackelab,項目名稱:autohmm,代碼行數:21,代碼來源:base.py

示例7: _calc_pareto_front

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import max [as 別名]
def _calc_pareto_front(self, ref_dirs, *args, **kwargs):
        F = super()._calc_pareto_front(ref_dirs, *args, **kwargs)
        a = anp.sqrt(anp.sum(F ** 2, 1) - 3 / 4 * anp.max(F ** 2, axis=1))
        a = anp.expand_dims(a, axis=1)
        a = anp.tile(a, [1, ref_dirs.shape[1]])
        F = F / a

        return F 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:10,代碼來源:cdtlz.py

示例8: __init__

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import max [as 別名]
def __init__(self, sampled_pops, conf_arr, sampled_n=None,
                 ascertainment_pop=None):
        """Use build_config_list() instead of calling this constructor directly"""
        # If sampled_n=None, ConfigList.sampled_n will be the max number of
        # observed individuals/alleles per population.
        self.sampled_pops = tuple(sampled_pops)
        self.value = conf_arr

        if ascertainment_pop is None:
            ascertainment_pop = [True] * len(sampled_pops)
        self.ascertainment_pop = np.array(ascertainment_pop)
        self.ascertainment_pop.setflags(write=False)
        if all(not a for a in self.ascertainment_pop):
            raise ValueError(
                "At least one of the populations must be used for "
                "ascertainment of polymorphic sites")

        max_n = np.max(np.sum(self.value, axis=2), axis=0)

        if sampled_n is None:
            sampled_n = max_n
        sampled_n = np.array(sampled_n)
        if np.any(sampled_n < max_n):
            raise ValueError("config greater than sampled_n")
        self.sampled_n = sampled_n
        if not np.sum(sampled_n[self.ascertainment_pop]) >= 2:
            raise ValueError("The total sample size of the ascertainment "
                             "populations must be >= 2")

        config_sampled_n = np.sum(self.value, axis=2)
        self.has_missing_data = np.any(config_sampled_n != self.sampled_n)

        if np.any(np.sum(self.value[:, self.ascertainment_pop, :], axis=1)
                  == 0):
            raise ValueError("Monomorphic sites not allowed. In addition, all"
                             " sites must be polymorphic when restricted to"
                             " the ascertainment populations") 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:39,代碼來源:configurations.py

示例9: test_underflow_robustness

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import max [as 別名]
def test_underflow_robustness(folded):
    num_runs = 1000
    sampled_pops = (1, 2, 3)
    sampled_n = (5, 5, 5)

    n_bases = int(1e3)
    demo = momi.DemographicModel(1.0, .25, muts_per_gen=2.5 / n_bases)
    for p in sampled_pops:
        demo.add_leaf(p)
    demo.add_time_param("t0")
    demo.add_time_param("t1", lower_constraints=["t0"])
    demo.move_lineages(1, 2, "t0")
    demo.move_lineages(2, 3, "t1")

    true_params = np.array([0.5, 0.7])
    demo.set_params(true_params)

    data = demo.simulate_data(
        length=n_bases,
        recoms_per_gen=0.0,
        num_replicates=num_runs,
        sampled_n_dict=dict(zip(sampled_pops, sampled_n)))

    sfs = data.extract_sfs(1)
    if folded:
        sfs = sfs.fold()

    demo.set_data(sfs)
    demo.set_params({"t0": 0.1, "t1": 100.0})
    optimize_res = demo.optimize()

    print(optimize_res)
    inferred_params = np.array(list(demo.get_params().values()))

    error = (true_params - inferred_params) / true_params
    print("# Truth:\n", true_params)
    print("# Inferred:\n", inferred_params)
    print("# Max Relative Error: %f" % max(abs(error)))
    print("# Relative Error:", "\n", error)

    assert max(abs(error)) < .1 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:43,代碼來源:test_inference.py

示例10: span

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import max [as 別名]
def span(self):
        # Returns the span (y-distance between the root of the wing and the tip).
        # If symmetric, this is doubled to obtain the full span.
        spans = []
        for i in range(len(self.xsecs)):
            spans.append(np.abs(self.xsecs[i].xyz_le[1] - self.xsecs[0].xyz_le[1]))
        span = np.max(spans)
        if self.symmetric:
            span *= 2
        return span 
開發者ID:peterdsharpe,項目名稱:AeroSandbox,代碼行數:12,代碼來源:geometry.py

示例11: get_sharp_TE_airfoil

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import max [as 別名]
def get_sharp_TE_airfoil(self):
        # Returns a version of the airfoil with a sharp trailing edge.

        upper_original_coors = self.upper_coordinates()  # Note: includes leading edge point, be careful about duplicates
        lower_original_coors = self.lower_coordinates()  # Note: includes leading edge point, be careful about duplicates

        # Find data about the TE

        # Get the scale factor
        x_mcl = self.mcl_coordinates[:, 0]
        x_max = np.max(x_mcl)
        x_min = np.min(x_mcl)
        scale_factor = (x_mcl - x_min) / (x_max - x_min)  # linear contraction

        # Do the contraction
        upper_minus_mcl_adjusted = self.upper_minus_mcl - self.upper_minus_mcl[-1, :] * np.expand_dims(scale_factor, 1)

        # Recreate coordinates
        upper_coordinates_adjusted = np.flipud(self.mcl_coordinates + upper_minus_mcl_adjusted)
        lower_coordinates_adjusted = self.mcl_coordinates - upper_minus_mcl_adjusted

        coordinates = np.vstack((
            upper_coordinates_adjusted[:-1, :],
            lower_coordinates_adjusted
        ))

        # Make a new airfoil with the coordinates
        name = self.name + ", with sharp TE"
        new_airfoil = Airfoil(name=name, coordinates=coordinates, repanel=False)

        return new_airfoil 
開發者ID:peterdsharpe,項目名稱:AeroSandbox,代碼行數:33,代碼來源:geometry.py

示例12: logsumexp

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import max [as 別名]
def logsumexp(X, axis, keepdims=False):
    max_X = np.max(X)
    return max_X + np.log(np.sum(np.exp(X - max_X), axis=axis, keepdims=keepdims)) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:5,代碼來源:convnet.py

示例13: forward_pass

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import max [as 別名]
def forward_pass(self, inputs, param_vector):
        new_shape = inputs.shape[:2]
        for i in [0, 1]:
            pool_width = self.pool_shape[i]
            img_width = inputs.shape[i + 2]
            new_shape += (img_width // pool_width, pool_width)
        result = inputs.reshape(new_shape)
        return np.max(np.max(result, axis=3), axis=4) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:10,代碼來源:convnet.py

示例14: defaultmax

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import max [as 別名]
def defaultmax(x, default=-np.inf):
    if x.size == 0:
        return default
    return np.max(x) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:6,代碼來源:bayesian_optimization.py

示例15: logsumexp

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import max [as 別名]
def logsumexp(x):
    """Numerically stable log(sum(exp(x))), also defined in scipy.special"""
    max_x = np.max(x)
    return max_x + np.log(np.sum(np.exp(x - max_x)))

# Next, we write a function that specifies the gradient with a closure.
# The reason for the closure is so that the gradient can depend
# on both the input to the original function (x), and the output of the
# original function (ans). 
開發者ID:HIPS,項目名稱:autograd,代碼行數:11,代碼來源:define_gradient.py


注:本文中的autograd.numpy.max方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。