當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.log方法代碼示例

本文整理匯總了Python中autograd.numpy.log方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.log方法的具體用法?Python numpy.log怎麽用?Python numpy.log使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在autograd.numpy的用法示例。


在下文中一共展示了numpy.log方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import log [as 別名]
def __init__(self, n_var=2, n_constr=2, **kwargs):
        super().__init__(n_var, n_constr, **kwargs)

        a, b = anp.zeros(n_constr + 1), anp.zeros(n_constr + 1)
        a[0], b[0] = 1, 1
        delta = 1 / (n_constr + 1)
        alpha = delta

        for j in range(n_constr):
            beta = a[j] * anp.exp(-b[j] * alpha)
            a[j + 1] = (a[j] + beta) / 2
            b[j + 1] = - 1 / alpha * anp.log(beta / a[j + 1])

            alpha += delta

        self.a = a[1:]
        self.b = b[1:] 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:19,代碼來源:ctp.py

示例2: log_norm

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import log [as 別名]
def log_norm(self):
        try:
            return self._log_norm
        except AttributeError:
            if self.frame != self.model_frame:
                images_ = self.images[self.slices_for_images]
                weights_ = self.weights[self.slices_for_images]
            else:
                images_ = self.images
                weights_ = self.weights

            # normalization of the single-pixel likelihood:
            # 1 / [(2pi)^1/2 (sigma^2)^1/2]
            # with inverse variance weights: sigma^2 = 1/weight
            # full likelihood is sum over all data samples: pixel in images
            # NOTE: this assumes that all pixels are used in likelihood!
            log_sigma = np.zeros(weights_.shape, dtype=self.weights.dtype)
            cuts = weights_ > 0
            log_sigma[cuts] = np.log(1 / weights_[cuts])
            self._log_norm = (
                    np.prod(images_.shape) / 2 * np.log(2 * np.pi)
                    + np.sum(log_sigma) / 2
            )
        return self._log_norm 
開發者ID:pmelchior,項目名稱:scarlet,代碼行數:26,代碼來源:observation.py

示例3: get_loss

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import log [as 別名]
def get_loss(self, model):
        """Computes the loss/fidelity of a given model wrt to the observation
        Parameters
        ----------
        model: array
            A model from `Blend`
        Returns
        -------
        loss: float
            Loss of the model
        """
        model_ = self.render(model)
        images_ = self.images
        weights_ = self.weights

        # properly normalized likelihood
        log_sigma = np.zeros(weights_.shape, dtype=weights_.dtype)
        cuts = weights_ > 0
        log_sigma[cuts] = np.log(1 / weights_[cuts])
        log_norm = (
                np.prod(images_.shape) / 2 * np.log(2 * np.pi)
                + np.sum(log_sigma) / 2
        )

        return log_norm + 0.5 * np.sum(weights_ * (model_ - images_) ** 2) 
開發者ID:pmelchior,項目名稱:scarlet,代碼行數:27,代碼來源:observation.py

示例4: objective

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import log [as 別名]
def objective(self, w):
        obj = 0
        N = float(sum([np.sum(d[1]) for d in self.data_list]))
        for F,S in self.data_list:
            psi = np.dot(F, w)
            lam = self.link(psi)
            obj -= np.sum(S * np.log(lam) -lam*self.dt) / N
            # assert np.isfinite(ll)

        # Add penalties
        obj += (0.5 * np.sum(w[1:]**2) / self.sigma**2) / N
        obj += np.sum(np.abs(w[1:]) * self.lmbda) / N

        # assert np.isfinite(obj)

        return obj 
開發者ID:slinderman,項目名稱:pyhawkes,代碼行數:18,代碼來源:standard_models.py

示例5: goto_time

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import log [as 別名]
def goto_time(self, t, add_time=True):
        # if exponentially growing, add extra time points whenever
        # the population size doubles
        if self.curr_g != 0 and t < float('inf'):
            halflife = np.abs(np.log(.5) / self.curr_g)
            add_t = self.curr_t + halflife
            while add_t < t:
                self._push_time(add_t)
                add_t += halflife

        while self.time_stack and self.time_stack[0] < t:
            self.step_time(hq.heappop(self.time_stack))
        self.step_time(t, add=False)
        if add_time:
            # put t on queue to be added when processing next event
            # (allows further events to change population size before plotting)
            self._push_time(t) 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:19,代碼來源:demo_plotter.py

示例6: _entropy

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import log [as 別名]
def _entropy(self):
        counts = self._total_freqs
        n_snps = float(self.n_snps())
        p = counts / n_snps
        # return np.sum(p * np.log(p))
        ret = np.sum(p * np.log(p))

        # correct for missing data
        sampled_n = np.sum(self.configs.value, axis=2)
        sampled_n_counts = co.Counter()
        assert len(counts) == len(sampled_n)
        for c, n in zip(counts, sampled_n):
            n = tuple(n)
            sampled_n_counts[n] += c
        sampled_n_counts = np.array(
            list(sampled_n_counts.values()), dtype=float)

        ret = ret + np.sum(sampled_n_counts / n_snps *
                           np.log(n_snps / sampled_n_counts))
        assert not np.isnan(ret)
        return ret 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:23,代碼來源:sfs.py

示例7: _composite_log_likelihood

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import log [as 別名]
def _composite_log_likelihood(data, demo, mut_rate=None, truncate_probs=0.0, vector=False, p_missing=None, use_pairwise_diffs=False, **kwargs):
    try:
        sfs = data.sfs
    except AttributeError:
        sfs = data

    sfs_probs = np.maximum(expected_sfs(demo, sfs.configs, normalized=True, **kwargs),
                           truncate_probs)
    log_lik = sfs._integrate_sfs(np.log(sfs_probs), vector=vector)

    # add on log likelihood of poisson distribution for total number of SNPs
    if mut_rate is not None:
        log_lik = log_lik + \
            _mut_factor(sfs, demo, mut_rate, vector,
                        p_missing, use_pairwise_diffs)

    if not vector:
        log_lik = np.squeeze(log_lik)
    return log_lik 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:21,代碼來源:likelihood.py

示例8: simple_nea_admixture_demo

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import log [as 別名]
def simple_nea_admixture_demo(N_chb_bottom, N_chb_top, pulse_t, pulse_p, ej_chb, ej_yri, sampled_n=(14, 10)):
    ej_chb = pulse_t + ej_chb
    ej_yri = ej_chb + ej_yri

    G_chb = -np.log(N_chb_top / N_chb_bottom) / ej_chb

    model = momi.DemographicModel(1., .25)
    model.add_leaf("yri")
    model.add_leaf("chb")
    model.set_size("chb", 0., N=N_chb_bottom, g=G_chb)
    model.move_lineages("chb", "nea", t=pulse_t, p=pulse_p)
    model.move_lineages("chb", "yri", t=ej_chb)
    model.move_lineages("yri", "nea", t=ej_yri)
    return model
    #events = [('-en', 0., 'chb', N_chb_bottom),
    #          ('-eg', 0, 'chb', G_chb),
    #          ('-ep', pulse_t, 'chb', 'nea', pulse_p),
    #          ('-ej', ej_chb, 'chb', 'yri'),
    #          ('-ej', ej_yri, 'yri', 'nea'),
    #          ]

    #return make_demo_hist(events, ('yri', 'chb'), sampled_n)
    ## return make_demography(events, ('yri','chb'), sampled_n) 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:25,代碼來源:demo_utils.py

示例9: _compute_loss

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import log [as 別名]
def _compute_loss(self):
        """Compute and store loss value for the given batch of examples."""
        if self._loss_computed:
            return
        self._compute_distances()

        # NLL loss from the NIPS paper.
        exp_negative_distances = np.exp(-self.euclidean_dists)  # (1 + neg_size, batch_size)
        # Remove the value for the true edge (u,v) from the partition function
        Z = exp_negative_distances[1:].sum(axis=0)  # (batch_size)
        self.exp_negative_distances = exp_negative_distances  # (1 + neg_size, batch_size)
        self.Z = Z # (batch_size)

        self.pos_loss = self.euclidean_dists[0].sum()
        self.neg_loss = np.log(self.Z).sum()
        self.loss = self.pos_loss + self.neg_loss  # scalar


        self._loss_computed = True 
開發者ID:dalab,項目名稱:hyperbolic_cones,代碼行數:21,代碼來源:eucl_simple_model.py

示例10: _nll_loss_fn

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import log [as 別名]
def _nll_loss_fn(poincare_dists):
        """
        Parameters
        ----------
        poincare_dists : numpy.array
            All distances d(u,v) and d(u,v'), where v' is negative. Shape (1 + negative_size).

        Returns
        ----------
        log-likelihood loss function from the NIPS paper, Eq (6).
        """
        exp_negative_distances = grad_np.exp(-poincare_dists)

        # Remove the value for the true edge (u,v) from the partition function
        # return -grad_np.log(exp_negative_distances[0] / (- exp_negative_distances[0] + exp_negative_distances.sum()))
        return poincare_dists[0] + grad_np.log(exp_negative_distances[1:].sum()) 
開發者ID:dalab,項目名稱:hyperbolic_cones,代碼行數:18,代碼來源:poincare_model.py

示例11: _loglikelihood

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import log [as 別名]
def _loglikelihood(params, x, tx, T):
        warnings.simplefilter(action="ignore", category=FutureWarning)

        """Log likelihood for optimizer."""
        alpha, beta, gamma, delta = params

        betaln_ab = betaln(alpha, beta)
        betaln_gd = betaln(gamma, delta)

        A = betaln(alpha + x, beta + T - x) - betaln_ab + betaln(gamma, delta + T) - betaln_gd

        B = 1e-15 * np.ones_like(T)
        recency_T = T - tx - 1

        for j in np.arange(recency_T.max() + 1):
            ix = recency_T >= j
            B = B + ix * betaf(alpha + x, beta + tx - x + j) * betaf(gamma + 1, delta + tx + j)

        B = log(B) - betaln_gd - betaln_ab
        return logaddexp(A, B) 
開發者ID:CamDavidsonPilon,項目名稱:lifetimes,代碼行數:22,代碼來源:beta_geo_beta_binom_fitter.py

示例12: _build_errors_df

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import log [as 別名]
def _build_errors_df(name_errors, label):
  """Helper to build errors DataFrame."""
  series = []
  percentiles = np.linspace(0, 100, 21)
  index = percentiles / 100
  for name, errors in name_errors:
    series.append(pd.Series(
        np.nanpercentile(errors, q=percentiles), index=index, name=name))
  df = pd.concat(series, axis=1)
  df.columns.name = 'derivative'
  df.index.name = 'quantile'
  df = df.stack().rename('error').reset_index()
  with np.errstate(divide='ignore'):
    df['log(error)'] = np.log(df['error'])
  if label is not None:
    df['label'] = label
  return df 
開發者ID:google,項目名稱:tf-quant-finance,代碼行數:19,代碼來源:methods.py

示例13: softplus

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import log [as 別名]
def softplus(x):
    """ Numerically stable transform from real line to positive reals
    Returns np.log(1.0 + np.exp(x))
    Autograd friendly and fully vectorized
    
    @param x: array of values in (-\infty, +\infty)
    @return ans : array of values in (0, +\infty), same size as x
    """
    if not isinstance(x, float):
        mask1 = x > 0
        mask0 = np.logical_not(mask1)
        out = np.zeros_like(x)
        out[mask0] = np.log1p(np.exp(x[mask0]))
        out[mask1] = x[mask1] + np.log1p(np.exp(-x[mask1]))
        return out
    if x > 0:
        return x + np.log1p(np.exp(-x))
    else:
        return np.log1p(np.exp(x)) 
開發者ID:dtak,項目名稱:tree-regularization-public,代碼行數:21,代碼來源:model.py

示例14: EM

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import log [as 別名]
def EM(init_params, data, callback=None):
    def EM_update(params):
        natural_params = list(map(np.log, params))
        loglike, E_stats = vgrad(log_partition_function)(natural_params, data)  # E step
        if callback: callback(loglike, params)
        return list(map(normalize, E_stats))                                    # M step

    def fixed_point(f, x0):
        x1 = f(x0)
        while different(x0, x1):
            x0, x1 = x1, f(x1)
        return x1

    def different(params1, params2):
        allclose = partial(np.allclose, atol=1e-3, rtol=1e-3)
        return not all(map(allclose, params1, params2))

    return fixed_point(EM_update, init_params) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:20,代碼來源:hmm_em.py

示例15: make_nn_funs

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import log [as 別名]
def make_nn_funs(input_shape, layer_specs, L2_reg):
    parser = WeightsParser()
    cur_shape = input_shape
    for layer in layer_specs:
        N_weights, cur_shape = layer.build_weights_dict(cur_shape)
        parser.add_weights(layer, (N_weights,))

    def predictions(W_vect, inputs):
        """Outputs normalized log-probabilities.
        shape of inputs : [data, color, y, x]"""
        cur_units = inputs
        for layer in layer_specs:
            cur_weights = parser.get(W_vect, layer)
            cur_units = layer.forward_pass(cur_units, cur_weights)
        return cur_units

    def loss(W_vect, X, T):
        log_prior = -L2_reg * np.dot(W_vect, W_vect)
        log_lik = np.sum(predictions(W_vect, X) * T)
        return - log_prior - log_lik

    def frac_err(W_vect, X, T):
        return np.mean(np.argmax(T, axis=1) != np.argmax(pred_fun(W_vect, X), axis=1))

    return parser.N, predictions, loss, frac_err 
開發者ID:HIPS,項目名稱:autograd,代碼行數:27,代碼來源:convnet.py


注:本文中的autograd.numpy.log方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。