當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.inf方法代碼示例

本文整理匯總了Python中autograd.numpy.inf方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.inf方法的具體用法?Python numpy.inf怎麽用?Python numpy.inf使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在autograd.numpy的用法示例。


在下文中一共展示了numpy.inf方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: constraint_c2

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import inf [as 別名]
def constraint_c2(f, r):
    n_obj = f.shape[1]

    v1 = anp.inf * anp.ones(f.shape[0])

    for i in range(n_obj):
        temp = (f[:, i] - 1) ** 2 + (anp.sum(f ** 2, axis=1) - f[:, i] ** 2) - r ** 2
        v1 = anp.minimum(temp.flatten(), v1)

    a = 1 / anp.sqrt(n_obj)
    v2 = anp.sum((f - a) ** 2, axis=1) - r ** 2
    g = anp.minimum(v1, v2.flatten())

    return g 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:16,代碼來源:cdtlz.py

示例2: __init__

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import inf [as 別名]
def __init__(self, K, B, dt=1.0, sigma=np.inf, lmbda=np.inf):
        self.K, self.B, self.dt, self.sigma, self.lmbda = K, B, dt, sigma, lmbda

        # Initialize weights
        self.w = np.zeros(1+self.K*self.B)

        # List of event counts and filtered inputs
        self.data_list = [] 
開發者ID:slinderman,項目名稱:pyhawkes,代碼行數:10,代碼來源:standard_models.py

示例3: defaultmax

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import inf [as 別名]
def defaultmax(x, default=-np.inf):
    if x.size == 0:
        return default
    return np.max(x) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:6,代碼來源:bayesian_optimization.py

示例4: test_nan_to_num

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import inf [as 別名]
def test_nan_to_num():
    y = np.array([0., np.nan, np.inf, -np.inf])
    fun = lambda x: np.sum(np.sin(np.nan_to_num(x + y)))

    x = np.random.randn(4)
    check_grads(fun)(x)

# TODO(mattjj): np.frexp returns a pair of ndarrays and the second is an int
# type, for which there is currently no vspace registered
#def test_frexp():
#    fun = lambda x: np.frexp(x)[0]
#    A = 1.2 #np.random.rand(4,3) * 0.8 + 2.1
#    check_grads(fun)(A) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:15,代碼來源:test_numpy.py

示例5: uniform_reference_directions

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import inf [as 別名]
def uniform_reference_directions(self, n_partitions, n_dim):
        ref_dirs = []
        ref_dir = anp.full(n_dim, anp.inf)
        self.__uniform_reference_directions(ref_dirs, ref_dir, n_partitions, n_partitions, 0)
        return anp.concatenate(ref_dirs, axis=0) 
開發者ID:msu-coinlab,項目名稱:pymop,代碼行數:7,代碼來源:util.py

示例6: multivariate_t_rvs

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import inf [as 別名]
def multivariate_t_rvs(self, m, S, random_state = None):
            '''generate random variables of multivariate t distribution
            Parameters
            ----------
            m : array_like
                mean of random variable, length determines dimension of random variable
            S : array_like
                square array of covariance  matrix
            df : int or float
                degrees of freedom
            n : int
                number of observations, return random array will be (n, len(m))
            random_state : int
                           seed
            Returns
            -------
            rvs : ndarray, (n, len(m))
                each row is an independent draw of a multivariate t distributed
                random variable
            '''
            np.random.rand(9)
            m = np.asarray(m)
            d = self.n_features
            df = self.degree_freedom
            n = 1
            if df == np.inf:
                x = 1.
            else:
                x = random_state.chisquare(df, n)/df
            np.random.rand(90)

            z = random_state.multivariate_normal(np.zeros(d),S,(n,))
            return m + z/np.sqrt(x)[:,None]
            # same output format as random.multivariate_normal 
開發者ID:mackelab,項目名稱:autohmm,代碼行數:36,代碼來源:student.py

示例7: coreset_single

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import inf [as 別名]
def coreset_single(N, D, dist, algn):
  #sys.stderr.write('n: ' + str(N) + ' d: ' +str(D) + ' dist: ' + str(dist) + ' salgn: ' + str(algn) + '\n')
  x, mu0, Sig0, Sig = gendata(N, D, dist)
  Sig0inv = np.linalg.inv(Sig0)
  Siginv = np.linalg.inv(Sig)
  mup, Sigp = weighted_post(mu0, np.linalg.inv(Sig0), np.linalg.inv(Sig), x, np.ones(x.shape[0]))
  anm, alg = algn
  coreset = alg(x, mu0, Sig0, Sig)

  #incremental M tests
  prev_err = np.inf
  for m in range(1, N+1):
    coreset.build(m)
    muw, Sigw = weighted_post(mu0, Sig0inv, Siginv, x, coreset.weights())
    w = coreset.weights()
    #check if coreset for 1 datapoint is immediately optimal
    if x.shape[0] == 1:
      assert np.fabs(w - np.array([1])) < tol, anm +" failed: coreset not immediately optimal with N = 1. weights: " + str(coreset.weights()) + " mup = " + str(mup) + " Sigp = " + str(Sigp) + " muw = " + str(muw) + " Sigw = " + str(Sigw) 
    #check if coreset is valid
    assert (w > 0.).sum() <= m, anm+" failed: coreset size > m"
    assert (w > 0.).sum() == coreset.size(), anm+" failed: sum of coreset.weights()>0  not equal to size(): sum = " + str((coreset.weights()>0).sum()) + " size(): " + str(coreset.size())
    assert np.all(w >= 0.), anm+" failed: coreset has negative weights"
    
 
    #check if actual output error is monotone
    err = weighted_post_KL(mu0, Sig0inv, Siginv, x, w, reverse=True if 'Reverse' in anm else False)
    assert err - prev_err < tol, anm+" failed: error is not monotone decreasing, err = " + str(err) + " prev_err = " +str(prev_err) 

    #check if coreset is computing error properly
    assert np.fabs(coreset.error() - err) < tol, anm+" failed: error est is not close to true err: est err = " + str(coreset.error()) + ' true err = ' + str(err)

    prev_err = err
  #save incremental M result
  w_inc = coreset.weights()

  #check reset
  coreset.reset()
  err = weighted_post_KL(mu0, Sig0inv, Siginv, x, np.zeros(x.shape[0]), reverse=True if 'Reverse' in anm else False)
  assert coreset.M == 0 and np.all(np.fabs(coreset.weights()) == 0.) and np.fabs(coreset.error() - err) < tol and not coreset.reached_numeric_limit, anm+" failed: reset() did not properly reset"

  #check build up to N all at once vs incremental
  #do this test for all except bin, where symmetries can cause instabilities in the choice of vector / weights
  if dist != 'bin':
    coreset.build(N)
    w = coreset.weights()
    err = weighted_post_KL(mu0, Sig0inv, Siginv, x, w, reverse=True if 'Reverse' in anm else False)
    err_inc = weighted_post_KL(mu0, Sig0inv, Siginv, x, w_inc, reverse=True if 'Reverse' in anm else False)
    assert np.sqrt(((w - w_inc)**2).sum()) < tol, anm+" failed: incremental buid up to N doesn't produce same result as one run at N : \n error = " +str(err) + " error_inc = " +  str(err_inc)
  #check if coreset with all_data_wts is optimal
  coreset._update_weights(coreset.all_data_wts)
  assert coreset.error() < tol, anm + " failed: coreset with all_data_wts does not have error 0" 
開發者ID:trevorcampbell,項目名稱:bayesian-coresets,代碼行數:53,代碼來源:test_gaussian.py


注:本文中的autograd.numpy.inf方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。