當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.hstack方法代碼示例

本文整理匯總了Python中autograd.numpy.hstack方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.hstack方法的具體用法?Python numpy.hstack怎麽用?Python numpy.hstack使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在autograd.numpy的用法示例。


在下文中一共展示了numpy.hstack方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_mcl_normal_direction_at_chord_fraction

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import hstack [as 別名]
def get_mcl_normal_direction_at_chord_fraction(self, chord_fraction):
        # Returns the normal direction of the mean camber line at a specified chord fraction.
        # If you input a single value, returns a 1D numpy array with 2 elements (x,y).
        # If you input a vector of values, returns a 2D numpy array. First index is the point number, second index is (x,y)

        # Right now, does it by finite differencing camber values :(
        # When I'm less lazy I'll make it do it in a proper, more efficient way
        # TODO make this not finite difference
        epsilon = np.sqrt(np.finfo(float).eps)

        cambers = self.get_camber_at_chord_fraction(chord_fraction)
        cambers_incremented = self.get_camber_at_chord_fraction(chord_fraction + epsilon)
        dydx = (cambers_incremented - cambers) / epsilon

        if dydx.shape == 1:  # single point
            normal = np.hstack((-dydx, 1))
            normal /= np.linalg.norm(normal)
            return normal
        else:  # multiple points vectorized
            normal = np.column_stack((-dydx, np.ones(dydx.shape)))
            normal /= np.expand_dims(np.linalg.norm(normal, axis=1), axis=1)  # normalize
            return normal 
開發者ID:peterdsharpe,項目名稱:AeroSandbox,代碼行數:24,代碼來源:geometry.py

示例2: _make_A

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import hstack [as 別名]
def _make_A(self, eps_vec):

        eps_vec_xx, eps_vec_yy = self._grid_average_2d(eps_vec)
        eps_vec_xx_inv = 1 / (eps_vec_xx + 1e-5)  # the 1e-5 is for numerical stability
        eps_vec_yy_inv = 1 / (eps_vec_yy + 1e-5)  # autograd throws 'divide by zero' errors.

        indices_diag = npa.vstack((npa.arange(self.N), npa.arange(self.N)))

        entries_DxEpsy,   indices_DxEpsy   = spsp_mult(self.entries_Dxb, self.indices_Dxb, eps_vec_yy_inv, indices_diag, self.N)
        entires_DxEpsyDx, indices_DxEpsyDx = spsp_mult(entries_DxEpsy, indices_DxEpsy, self.entries_Dxf, self.indices_Dxf, self.N)

        entries_DyEpsx,   indices_DyEpsx   = spsp_mult(self.entries_Dyb, self.indices_Dyb, eps_vec_xx_inv, indices_diag, self.N)
        entires_DyEpsxDy, indices_DyEpsxDy = spsp_mult(entries_DyEpsx, indices_DyEpsx, self.entries_Dyf, self.indices_Dyf, self.N)

        entries_d = 1 / EPSILON_0 * npa.hstack((entires_DxEpsyDx, entires_DyEpsxDy))
        indices_d = npa.hstack((indices_DxEpsyDx, indices_DyEpsxDy))

        entries_diag = MU_0 * self.omega**2 * npa.ones(self.N)

        entries_a = npa.hstack((entries_d, entries_diag))
        indices_a = npa.hstack((indices_d, indices_diag))

        return entries_a, indices_a 
開發者ID:fancompute,項目名稱:ceviche,代碼行數:25,代碼來源:fdfd.py

示例3: _solve_fn

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import hstack [as 別名]
def _solve_fn(self, eps_vec, entries_a, indices_a, Mz_vec):

        # convert the Mz current into Jx, Jy
        eps_vec_xx, eps_vec_yy = self._grid_average_2d(eps_vec)
        Jx_vec, Jy_vec = self._Hz_to_Ex_Ey(Mz_vec, eps_vec_xx, eps_vec_yy)

        # lump the current sources together and solve for electric field
        source_J_vec = npa.hstack((Jx_vec, Jy_vec))
        E_vec = sp_solve(entries_a, indices_a, source_J_vec)

        # strip out the x and y components of E and find the Hz component
        Ex_vec = E_vec[:self.N]
        Ey_vec = E_vec[self.N:]
        Hz_vec = self._Ex_Ey_to_Hz(Ex_vec, Ey_vec)

        return Ex_vec, Ey_vec, Hz_vec 
開發者ID:fancompute,項目名稱:ceviche,代碼行數:18,代碼來源:fdfd.py

示例4: _ntied_transmat_prior

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import hstack [as 別名]
def _ntied_transmat_prior(self, transmat_val):  # TODO: document choices
        transmat = np.empty((0, self.n_components))
        for r in range(self.n_unique):
            row = np.empty((self.n_chain, 0))
            for c in range(self.n_unique):
                if r == c:
                    subm = np.array(sp.diags([transmat_val[r, c],
                                    1.0], [0, 1],
                        shape=(self.n_chain, self.n_chain)).todense())
                else:
                    lower_left = np.zeros((self.n_chain, self.n_chain))
                    lower_left[self.n_tied, 0] = 1.0
                    subm = np.kron(transmat_val[r, c], lower_left)
                row = np.hstack((row, subm))
            transmat = np.vstack((transmat, row))
        return transmat 
開發者ID:mackelab,項目名稱:autohmm,代碼行數:18,代碼來源:tm.py

示例5: add_data

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import hstack [as 別名]
def add_data(self, F, S):
        T = F.shape[0]
        assert S.shape == (T,) and S.dtype in (np.int, np.uint, np.uint32)

        if F.shape[1] == self.K * self.B:
            F = np.hstack([np.ones((T,)),  F])
        else:
            assert F.shape[1] == 1 + self.K * self.B

        self.data_list.append((F, S)) 
開發者ID:slinderman,項目名稱:pyhawkes,代碼行數:12,代碼來源:standard_models.py

示例6: get_downsampled_mcl

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import hstack [as 別名]
def get_downsampled_mcl(self, mcl_fractions):
        # Returns the mean camber line in downsampled form

        mcl = self.mcl_coordinates
        # Find distances along mcl, assuming linear interpolation
        mcl_distances_between_points = np.sqrt(
            np.power(mcl[:-1, 0] - mcl[1:, 0], 2) +
            np.power(mcl[:-1, 1] - mcl[1:, 1], 2)
        )
        mcl_distances_cumulative = np.hstack((0, np.cumsum(mcl_distances_between_points)))
        mcl_distances_cumulative_normalized = mcl_distances_cumulative / mcl_distances_cumulative[-1]

        mcl_downsampled_x = np.interp(
            x=mcl_fractions,
            xp=mcl_distances_cumulative_normalized,
            fp=mcl[:, 0]
        )
        mcl_downsampled_y = np.interp(
            x=mcl_fractions,
            xp=mcl_distances_cumulative_normalized,
            fp=mcl[:, 1]
        )

        mcl_downsampled = np.column_stack((mcl_downsampled_x, mcl_downsampled_y))

        return mcl_downsampled 
開發者ID:peterdsharpe,項目名稱:AeroSandbox,代碼行數:28,代碼來源:geometry.py

示例7: repanel_current_airfoil

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import hstack [as 別名]
def repanel_current_airfoil(self, n_points_per_side=100):
        # Returns a repaneled version of the airfoil with cosine-spaced coordinates on the upper and lower surfaces.
        # Inputs:
        #   # n_points_per_side is the number of points PER SIDE (upper and lower) of the airfoil. 100 is a good number.
        # Notes: The number of points defining the final airfoil will be n_points_per_side*2-1,
        # since one point (the leading edge point) is shared by both the upper and lower surfaces.

        upper_original_coors = self.upper_coordinates()  # Note: includes leading edge point, be careful about duplicates
        lower_original_coors = self.lower_coordinates()  # Note: includes leading edge point, be careful about duplicates

        # Find distances between coordinates, assuming linear interpolation
        upper_distances_between_points = np.sqrt(
            np.power(upper_original_coors[:-1, 0] - upper_original_coors[1:, 0], 2) +
            np.power(upper_original_coors[:-1, 1] - upper_original_coors[1:, 1], 2)
        )
        lower_distances_between_points = np.sqrt(
            np.power(lower_original_coors[:-1, 0] - lower_original_coors[1:, 0], 2) +
            np.power(lower_original_coors[:-1, 1] - lower_original_coors[1:, 1], 2)
        )
        upper_distances_from_TE = np.hstack((0, np.cumsum(upper_distances_between_points)))
        lower_distances_from_LE = np.hstack((0, np.cumsum(lower_distances_between_points)))
        upper_distances_from_TE_normalized = upper_distances_from_TE / upper_distances_from_TE[-1]
        lower_distances_from_LE_normalized = lower_distances_from_LE / lower_distances_from_LE[-1]

        # Generate a cosine-spaced list of points from 0 to 1
        s = cosspace(n_points=n_points_per_side)

        x_upper_func = sp_interp.PchipInterpolator(x=upper_distances_from_TE_normalized, y=upper_original_coors[:, 0])
        y_upper_func = sp_interp.PchipInterpolator(x=upper_distances_from_TE_normalized, y=upper_original_coors[:, 1])
        x_lower_func = sp_interp.PchipInterpolator(x=lower_distances_from_LE_normalized, y=lower_original_coors[:, 0])
        y_lower_func = sp_interp.PchipInterpolator(x=lower_distances_from_LE_normalized, y=lower_original_coors[:, 1])

        x_coors = np.hstack((x_upper_func(s), x_lower_func(s)[1:]))
        y_coors = np.hstack((y_upper_func(s), y_lower_func(s)[1:]))

        coordinates = np.column_stack((x_coors, y_coors))
        self.coordinates = coordinates 
開發者ID:peterdsharpe,項目名稱:AeroSandbox,代碼行數:39,代碼來源:geometry.py

示例8: concat_and_multiply

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import hstack [as 別名]
def concat_and_multiply(weights, *args):
    cat_state = np.hstack(args + (np.ones((args[0].shape[0], 1)),))
    return np.dot(cat_state, weights)


### Define recurrent neural net ####### 
開發者ID:HIPS,項目名稱:autograd,代碼行數:8,代碼來源:rnn.py

示例9: test_hstack_1d

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import hstack [as 別名]
def test_hstack_1d(): combo_check(np.hstack, [0])([R(2), (R(2), R(2))]) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:3,代碼來源:test_systematic.py

示例10: test_hstack_2d

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import hstack [as 別名]
def test_hstack_2d(): combo_check(np.hstack, [0])([R(3, 2), (R(3, 4), R(3, 5))]) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:3,代碼來源:test_systematic.py

示例11: test_hstack_3d

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import hstack [as 別名]
def test_hstack_3d(): combo_check(np.hstack, [0])([R(2, 3, 4), (R(2, 1, 4), R(2, 5, 4))]) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:3,代碼來源:test_systematic.py

示例12: job_mmd_opt

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import hstack [as 別名]
def job_mmd_opt(p, data_source, tr, te, r):
    """
    MMD test of Gretton et al., 2012 used as a goodness-of-fit test.
    Require the ability to sample from p i.e., the UnnormalizedDensity p has 
    to be able to return a non-None from get_datasource()

    With optimization. Gaussian kernel.
    """
    data = tr + te
    X = data.data()
    with util.ContextTimer() as t:
        # median heuristic 
        pds = p.get_datasource()
        datY = pds.sample(data.sample_size(), seed=r+294)
        Y = datY.data()
        XY = np.vstack((X, Y))

        med = util.meddistance(XY, subsample=1000)

        # Construct a list of kernels to try based on multiples of the median
        # heuristic
        #list_gwidth = np.hstack( (np.linspace(20, 40, 10), (med**2)
        #    *(2.0**np.linspace(-2, 2, 20) ) ) )
        list_gwidth = (med**2)*(2.0**np.linspace(-3, 3, 30) ) 
        list_gwidth.sort()
        candidate_kernels = [kernel.KGauss(gw2) for gw2 in list_gwidth]

        mmd_opt = mgof.QuadMMDGofOpt(p, n_permute=300, alpha=alpha, seed=r+56)
        mmd_result = mmd_opt.perform_test(data,
                candidate_kernels=candidate_kernels,
                tr_proportion=tr_proportion, reg=1e-3)
    return { 'test_result': mmd_result, 'time_secs': t.secs}


# Define our custom Job, which inherits from base class IndependentJob 
開發者ID:wittawatj,項目名稱:kernel-gof,代碼行數:37,代碼來源:ex2_prob_params.py

示例13: job_mmd_opt

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import hstack [as 別名]
def job_mmd_opt(p, data_source, tr, te, r):
    """
    MMD test of Gretton et al., 2012 used as a goodness-of-fit test.
    Require the ability to sample from p i.e., the UnnormalizedDensity p has 
    to be able to return a non-None from get_datasource()

    With optimization. Gaussian kernel.
    """
    data = tr + te
    X = data.data()
    with util.ContextTimer() as t:
        # median heuristic 
        pds = p.get_datasource()
        datY = pds.sample(data.sample_size(), seed=r+294)
        Y = datY.data()
        XY = np.vstack((X, Y))

        med = util.meddistance(XY, subsample=1000)

        # Construct a list of kernels to try based on multiples of the median
        # heuristic
        #list_gwidth = np.hstack( (np.linspace(20, 40, 10), (med**2)
        #    *(2.0**np.linspace(-2, 2, 20) ) ) )
        list_gwidth = (med**2)*(2.0**np.linspace(-4, 4, 30) ) 
        list_gwidth.sort()
        candidate_kernels = [kernel.KGauss(gw2) for gw2 in list_gwidth]

        mmd_opt = mgof.QuadMMDGofOpt(p, n_permute=300, alpha=alpha, seed=r)
        mmd_result = mmd_opt.perform_test(data,
                candidate_kernels=candidate_kernels,
                tr_proportion=tr_proportion, reg=1e-3)
    return { 'test_result': mmd_result, 'time_secs': t.secs} 
開發者ID:wittawatj,項目名稱:kernel-gof,代碼行數:34,代碼來源:ex1_vary_n.py

示例14: optimize_auto_init

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import hstack [as 別名]
def optimize_auto_init(p, dat, J, **ops):
        """
        Optimize parameters by calling optimize_locs_widths(). Automatically 
        initialize the test locations and the Gaussian width.

        Return optimized locations, Gaussian width, optimization info
        """
        assert J>0
        # Use grid search to initialize the gwidth
        X = dat.data()
        n_gwidth_cand = 5
        gwidth_factors = 2.0**np.linspace(-3, 3, n_gwidth_cand) 
        med2 = util.meddistance(X, 1000)**2

        k = kernel.KGauss(med2*2)
        # fit a Gaussian to the data and draw to initialize V0
        V0 = util.fit_gaussian_draw(X, J, seed=829, reg=1e-6)
        list_gwidth = np.hstack( ( (med2)*gwidth_factors ) )
        besti, objs = GaussFSSD.grid_search_gwidth(p, dat, V0, list_gwidth)
        gwidth = list_gwidth[besti]
        assert util.is_real_num(gwidth), 'gwidth not real. Was %s'%str(gwidth)
        assert gwidth > 0, 'gwidth not positive. Was %.3g'%gwidth
        logging.info('After grid search, gwidth=%.3g'%gwidth)

        
        V_opt, gwidth_opt, info = GaussFSSD.optimize_locs_widths(p, dat,
                gwidth, V0, **ops) 

        # set the width bounds
        #fac_min = 5e-2
        #fac_max = 5e3
        #gwidth_lb = fac_min*med2
        #gwidth_ub = fac_max*med2
        #gwidth_opt = max(gwidth_lb, min(gwidth_opt, gwidth_ub))
        return V_opt, gwidth_opt, info 
開發者ID:wittawatj,項目名稱:kernel-gof,代碼行數:37,代碼來源:goftest.py

示例15: power_criterion

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import hstack [as 別名]
def power_criterion(p, dat, b, c, test_locs, reg=1e-2):
        k = kernel.KIMQ(b=b, c=c)
        return FSSD.power_criterion(p, dat, k, test_locs, reg)

    #@staticmethod
    #def optimize_auto_init(p, dat, J, **ops):
    #    """
    #    Optimize parameters by calling optimize_locs_widths(). Automatically 
    #    initialize the test locations and the Gaussian width.

    #    Return optimized locations, Gaussian width, optimization info
    #    """
    #    assert J>0
    #    # Use grid search to initialize the gwidth
    #    X = dat.data()
    #    n_gwidth_cand = 5
    #    gwidth_factors = 2.0**np.linspace(-3, 3, n_gwidth_cand) 
    #    med2 = util.meddistance(X, 1000)**2

    #    k = kernel.KGauss(med2*2)
    #    # fit a Gaussian to the data and draw to initialize V0
    #    V0 = util.fit_gaussian_draw(X, J, seed=829, reg=1e-6)
    #    list_gwidth = np.hstack( ( (med2)*gwidth_factors ) )
    #    besti, objs = GaussFSSD.grid_search_gwidth(p, dat, V0, list_gwidth)
    #    gwidth = list_gwidth[besti]
    #    assert util.is_real_num(gwidth), 'gwidth not real. Was %s'%str(gwidth)
    #    assert gwidth > 0, 'gwidth not positive. Was %.3g'%gwidth
    #    logging.info('After grid search, gwidth=%.3g'%gwidth)

        
    #    V_opt, gwidth_opt, info = GaussFSSD.optimize_locs_widths(p, dat,
    #            gwidth, V0, **ops) 

    #    # set the width bounds
    #    #fac_min = 5e-2
    #    #fac_max = 5e3
    #    #gwidth_lb = fac_min*med2
    #    #gwidth_ub = fac_max*med2
    #    #gwidth_opt = max(gwidth_lb, min(gwidth_opt, gwidth_ub))
    #    return V_opt, gwidth_opt, info 
開發者ID:wittawatj,項目名稱:kernel-gof,代碼行數:42,代碼來源:goftest.py


注:本文中的autograd.numpy.hstack方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。