當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.eye方法代碼示例

本文整理匯總了Python中autograd.numpy.eye方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.eye方法的具體用法?Python numpy.eye怎麽用?Python numpy.eye使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在autograd.numpy的用法示例。


在下文中一共展示了numpy.eye方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: init_model_params

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import eye [as 別名]
def init_model_params(Dx, Dy, alpha, r, obs, rs = npr.RandomState(0)):
    mu0 = np.zeros(Dx)
    Sigma0 = np.eye(Dx)
    
    A = np.zeros((Dx,Dx))
    for i in range(Dx):
        for j in range(Dx):
            A[i,j] = alpha**(abs(i-j)+1)
            
    Q = np.eye(Dx)
    C = np.zeros((Dy,Dx))
    if obs == 'sparse':
        C[:Dy,:Dy] = np.eye(Dy)
    else:
        C = rs.normal(size=(Dy,Dx))
    R = r * np.eye(Dy)
    
    return (mu0, Sigma0, A, Q, C, R) 
開發者ID:blei-lab,項目名稱:variational-smc,代碼行數:20,代碼來源:lgss_example.py

示例2: central

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import eye [as 別名]
def central(f0, ds, w):
  """Apply central difference method to estimate derivatives."""
  f = lambda o: shift(f0, o)
  eye = np.eye(f0.ndim, dtype=int)
  offsets = [-eye[d] for d in ds]

  if not ds:
    return f0
  elif len(ds) == 1:  # First order derivatives.
    i = offsets[0]
    return (f(i) - f(-i)) / (2 * w)
  elif len(ds) == 2:  # Second order derivatives.
    i, j = offsets
    w2 = np.square(w)
    if ds[0] == ds[1]:  # d^2/dxdx
      return (f(i) - 2 * f0 + f(-i)) / w2
    else:  # d^2/dxdy
      return (f(i + j) - f(i - j) - f(j - i) + f(-i - j)) / (4 * w2)
  else:
    raise NotImplementedError(ds) 
開發者ID:google,項目名稱:tf-quant-finance,代碼行數:22,代碼來源:methods.py

示例3: __init__

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import eye [as 別名]
def __init__(self, generate_scalar, matrix_class):
        rng = np.random.RandomState(SEED)
        matrix_pairs = {}
        for sz in SIZES:
            scalar = generate_scalar(rng)
            matrix_pairs[sz] = (
                matrix_class(scalar, sz), scalar * np.identity(sz))

        if AUTOGRAD_AVAILABLE:

            def param_func(param, matrix):
                return param * anp.eye(matrix.shape[0])

            def get_param(matrix):
                return matrix._scalar

        else:
            param_func, get_param = None, None

        super().__init__(
            matrix_pairs, get_param, param_func, rng) 
開發者ID:matt-graham,項目名稱:mici,代碼行數:23,代碼來源:test_matrices.py

示例4: fit_gaussian_draw

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import eye [as 別名]
def fit_gaussian_draw(X, J, seed=28, reg=1e-7, eig_pow=1.0):
    """
    Fit a multivariate normal to the data X (n x d) and draw J points 
    from the fit. 
    - reg: regularizer to use with the covariance matrix
    - eig_pow: raise eigenvalues of the covariance matrix to this power to construct 
        a new covariance matrix before drawing samples. Useful to shrink the spread 
        of the variance.
    """
    with NumpySeedContext(seed=seed):
        d = X.shape[1]
        mean_x = np.mean(X, 0)
        cov_x = np.cov(X.T)
        if d==1:
            cov_x = np.array([[cov_x]])
        [evals, evecs] = np.linalg.eig(cov_x)
        evals = np.maximum(0, np.real(evals))
        assert np.all(np.isfinite(evals))
        evecs = np.real(evecs)
        shrunk_cov = evecs.dot(np.diag(evals**eig_pow)).dot(evecs.T) + reg*np.eye(d)
        V = np.random.multivariate_normal(mean_x, shrunk_cov, J)
    return V 
開發者ID:wittawatj,項目名稱:kernel-gof,代碼行數:24,代碼來源:util.py

示例5: gmm_sample

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import eye [as 別名]
def gmm_sample(self, mean=None, w=None, N=10000,n=10,d=2,seed=10):
        np.random.seed(seed)
        self.d = d
        if mean is None:
            mean = np.random.randn(n,d)*10
        if w is None:
            w = np.random.rand(n)
        w = old_div(w,sum(w))
        multi = np.random.multinomial(N,w)
        X = np.zeros((N,d))
        base = 0
        for i in range(n):
            X[base:base+multi[i],:] = np.random.multivariate_normal(mean[i,:], np.eye(self.d), multi[i])
            base += multi[i]
        
        llh = np.zeros(N)
        for i in range(n):
            llh += w[i] * stats.multivariate_normal.pdf(X, mean[i,:], np.eye(self.d))
        #llh = llh/sum(llh)
        return X, llh 
開發者ID:wittawatj,項目名稱:kernel-gof,代碼行數:22,代碼來源:data.py

示例6: get_inertia_tensor_about_point

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import eye [as 別名]
def get_inertia_tensor_about_point(self, point):
        # Returns the inertia tensor about an arbitrary point.
        # Using https://en.wikipedia.org/wiki/Parallel_axis_theorem#Tensor_generalization

        R = point - self.xyz_cg
        I = self.get_inertia_tensor()
        m = self.mass
        J = I + m * (np.dot(R, R) * np.eye(3) - np.outer(R, R))

        return J 
開發者ID:peterdsharpe,項目名稱:AeroSandbox,代碼行數:12,代碼來源:weights.py

示例7: angle_axis_rotation_matrix

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import eye [as 別名]
def angle_axis_rotation_matrix(angle, axis, axis_already_normalized=False):
    # Gives the rotation matrix from an angle and an axis.
    # An implmentation of https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle
    # Inputs:
    #   * angle: can be one angle or a vector (1d ndarray) of angles. Given in radians.
    #   * axis: a 1d numpy array of length 3 (x,y,z). Represents the angle.
    #   * axis_already_normalized: boolean, skips normalization for speed if you flag this true.
    # Outputs:
    #   * If angle is a scalar, returns a 3x3 rotation matrix.
    #   * If angle is a vector, returns a 3x3xN rotation matrix.
    if not axis_already_normalized:
        axis = axis / np.linalg.norm(axis)

    sintheta = np.sin(angle)
    costheta = np.cos(angle)
    cpm = np.array(
        [[0, -axis[2], axis[1]],
         [axis[2], 0, -axis[0]],
         [-axis[1], axis[0], 0]]
    )  # The cross product matrix of the rotation axis vector
    outer_axis = np.outer(axis, axis)

    angle = np.array(angle)  # make sure angle is a ndarray
    if len(angle.shape) == 0:  # is a scalar
        rot_matrix = costheta * np.eye(3) + sintheta * cpm + (1 - costheta) * outer_axis
        return rot_matrix
    else:  # angle is assumed to be a 1d ndarray
        rot_matrix = costheta * np.expand_dims(np.eye(3), 2) + sintheta * np.expand_dims(cpm, 2) + (
                1 - costheta) * np.expand_dims(outer_axis, 2)
        return rot_matrix 
開發者ID:peterdsharpe,項目名稱:AeroSandbox,代碼行數:32,代碼來源:geometry.py

示例8: compute_rotation_matrix_wind_to_geometry

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import eye [as 別名]
def compute_rotation_matrix_wind_to_geometry(self):
        # Computes the 3x3 rotation matrix required to go from wind axes to geometry axes.
        sinalpha = np.sin(np.radians(self.alpha))
        cosalpha = np.cos(np.radians(self.alpha))
        sinbeta = np.sin(np.radians(self.beta))
        cosbeta = np.cos(np.radians(self.beta))

        # r=-1*np.array([
        #     [cosbeta*cosalpha, -sinbeta, cosbeta*sinalpha],
        #     [sinbeta*cosalpha, cosbeta, sinbeta*sinalpha],
        #     [-sinalpha, 0, cosalpha]
        # ])

        eye = np.eye(3)

        alpharotation = np.array([
            [cosalpha, 0, -sinalpha],
            [0, 1, 0],
            [sinalpha, 0, cosalpha]
        ])

        betarotation = np.array([
            [cosbeta, -sinbeta, 0],
            [sinbeta, cosbeta, 0],
            [0, 0, 1]
        ])

        axesflip = np.array([
            [-1, 0, 0],
            [0, 1, 0, ],
            [0, 0, -1]
        ])  # Since in geometry axes, X is downstream by convention, while in wind axes, X is upstream by convetion. Same with Z being up/down respectively.

        r = axesflip @ alpharotation @ betarotation @ eye  # where "@" is the matrix multiplication operator

        return r 
開發者ID:peterdsharpe,項目名稱:AeroSandbox,代碼行數:38,代碼來源:performance.py

示例9: make_gp_funs

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import eye [as 別名]
def make_gp_funs(cov_func, num_cov_params):
    """Functions that perform Gaussian process regression.
       cov_func has signature (cov_params, x, x')"""

    def unpack_kernel_params(params):
        mean        = params[0]
        cov_params  = params[2:]
        noise_scale = np.exp(params[1]) + 0.0001
        return mean, cov_params, noise_scale

    def predict(params, x, y, xstar):
        """Returns the predictive mean and covariance at locations xstar,
           of the latent function value f (without observation noise)."""
        mean, cov_params, noise_scale = unpack_kernel_params(params)
        cov_f_f = cov_func(cov_params, xstar, xstar)
        cov_y_f = cov_func(cov_params, x, xstar)
        cov_y_y = cov_func(cov_params, x, x) + noise_scale * np.eye(len(y))
        pred_mean = mean +   np.dot(solve(cov_y_y, cov_y_f).T, y - mean)
        pred_cov = cov_f_f - np.dot(solve(cov_y_y, cov_y_f).T, cov_y_f)
        return pred_mean, pred_cov

    def log_marginal_likelihood(params, x, y):
        mean, cov_params, noise_scale = unpack_kernel_params(params)
        cov_y_y = cov_func(cov_params, x, x) + noise_scale * np.eye(len(y))
        prior_mean = mean * np.ones(len(y))
        return mvn.logpdf(y, prior_mean, cov_y_y)

    return num_cov_params + 2, predict, log_marginal_likelihood

# Define an example covariance function. 
開發者ID:HIPS,項目名稱:autograd,代碼行數:32,代碼來源:gaussian_process.py

示例10: init_gmm_params

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import eye [as 別名]
def init_gmm_params(num_components, D, scale, rs=npr.RandomState(0)):
    return {'log proportions': rs.randn(num_components) * scale,
            'means':           rs.randn(num_components, D) * scale,
            'lower triangles': np.zeros((num_components, D, D)) + np.eye(D)} 
開發者ID:HIPS,項目名稱:autograd,代碼行數:6,代碼來源:gmm.py

示例11: make_psd

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import eye [as 別名]
def make_psd(mat): return np.dot(mat.T, mat) + np.eye(mat.shape[0]) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:3,代碼來源:test_scipy.py

示例12: test_inv

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import eye [as 別名]
def test_inv():
    def fun(x): return np.linalg.inv(x)
    D = 8
    mat = npr.randn(D, D)
    mat = np.dot(mat, mat) + 1.0 * np.eye(D)
    check_grads(fun)(mat) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:8,代碼來源:test_linalg.py

示例13: test_inv_3d

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import eye [as 別名]
def test_inv_3d():
    fun = lambda x: np.linalg.inv(x)

    D = 4
    mat = npr.randn(D, D, D) + 5*np.eye(D)
    check_grads(fun)(mat)

    mat = npr.randn(D, D, D, D) + 5*np.eye(D)
    check_grads(fun)(mat) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:11,代碼來源:test_linalg.py

示例14: test_solve_arg1_1d

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import eye [as 別名]
def test_solve_arg1_1d():
    D = 8
    A = npr.randn(D, D) + 10.0 * np.eye(D)
    B = npr.randn(D)
    def fun(a): return np.linalg.solve(a, B)
    check_grads(fun)(A) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:8,代碼來源:test_linalg.py

示例15: test_solve_arg2

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import eye [as 別名]
def test_solve_arg2():
    D = 6
    A = npr.randn(D, D) + 1.0 * np.eye(D)
    B = npr.randn(D, D - 1)
    def fun(b): return np.linalg.solve(A, b)
    check_grads(fun)(B) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:8,代碼來源:test_linalg.py


注:本文中的autograd.numpy.eye方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。