當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.expand_dims方法代碼示例

本文整理匯總了Python中autograd.numpy.expand_dims方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.expand_dims方法的具體用法?Python numpy.expand_dims怎麽用?Python numpy.expand_dims使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在autograd.numpy的用法示例。


在下文中一共展示了numpy.expand_dims方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_mcl_normal_direction_at_chord_fraction

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import expand_dims [as 別名]
def get_mcl_normal_direction_at_chord_fraction(self, chord_fraction):
        # Returns the normal direction of the mean camber line at a specified chord fraction.
        # If you input a single value, returns a 1D numpy array with 2 elements (x,y).
        # If you input a vector of values, returns a 2D numpy array. First index is the point number, second index is (x,y)

        # Right now, does it by finite differencing camber values :(
        # When I'm less lazy I'll make it do it in a proper, more efficient way
        # TODO make this not finite difference
        epsilon = np.sqrt(np.finfo(float).eps)

        cambers = self.get_camber_at_chord_fraction(chord_fraction)
        cambers_incremented = self.get_camber_at_chord_fraction(chord_fraction + epsilon)
        dydx = (cambers_incremented - cambers) / epsilon

        if dydx.shape == 1:  # single point
            normal = np.hstack((-dydx, 1))
            normal /= np.linalg.norm(normal)
            return normal
        else:  # multiple points vectorized
            normal = np.column_stack((-dydx, np.ones(dydx.shape)))
            normal /= np.expand_dims(np.linalg.norm(normal, axis=1), axis=1)  # normalize
            return normal 
開發者ID:peterdsharpe,項目名稱:AeroSandbox,代碼行數:24,代碼來源:geometry.py

示例2: compute_rotation_velocity_geometry_axes

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import expand_dims [as 別名]
def compute_rotation_velocity_geometry_axes(self, points):
        # Computes the effective velocity due to rotation at a set of points.
        # Input: a Nx3 array of points
        # Output: a Nx3 array of effective velocities
        angular_velocity_vector_geometry_axes = np.array(
            [-self.p, self.q, -self.r])  # signs convert from body axes to geometry axes
        angular_velocity_vector_geometry_axes = np.expand_dims(angular_velocity_vector_geometry_axes, axis=0)

        rotation_velocity_geometry_axes = np.cross(
            angular_velocity_vector_geometry_axes,
            points,
            axis=1
        )

        rotation_velocity_geometry_axes = -rotation_velocity_geometry_axes  # negative sign, since we care about the velocity the WING SEES, not the velocity of the wing.

        return rotation_velocity_geometry_axes 
開發者ID:peterdsharpe,項目名稱:AeroSandbox,代碼行數:19,代碼來源:performance.py

示例3: callback

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import expand_dims [as 別名]
def callback(params, t, g):
        print("Iteration {} lower bound {}".format(t, -objective(params, t)))

        # Sample functions from posterior.
        rs = npr.RandomState(0)
        mean, log_std = unpack_params(params)
        #rs = npr.RandomState(0)
        sample_weights = rs.randn(10, num_weights) * np.exp(log_std) + mean
        plot_inputs = np.linspace(-8, 8, num=400)
        outputs = predictions(sample_weights, np.expand_dims(plot_inputs, 1))

        # Plot data and functions.
        plt.cla()
        ax.plot(inputs.ravel(), targets.ravel(), 'bx')
        ax.plot(plot_inputs, outputs[:, :, 0].T)
        ax.set_ylim([-2, 3])
        plt.draw()
        plt.pause(1.0/60.0)

    # Initialize variational parameters 
開發者ID:HIPS,項目名稱:autograd,代碼行數:22,代碼來源:bayesian_neural_net.py

示例4: _calc_pareto_front

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import expand_dims [as 別名]
def _calc_pareto_front(self, ref_dirs, *args, **kwargs):
        F = super()._calc_pareto_front(ref_dirs, *args, **kwargs)
        a = anp.sqrt(anp.sum(F ** 2, 1) - 3 / 4 * anp.max(F ** 2, axis=1))
        a = anp.expand_dims(a, axis=1)
        a = anp.tile(a, [1, ref_dirs.shape[1]])
        F = F / a

        return F 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:10,代碼來源:cdtlz.py

示例5: constraint_c4_cylindrical

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import expand_dims [as 別名]
def constraint_c4_cylindrical(f, r):  # cylindrical
    l = anp.mean(f, axis=1)
    l = anp.expand_dims(l, axis=1)
    g = -anp.sum(anp.power(f - l, 2), axis=1) + anp.power(r, 2)
    return g 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:7,代碼來源:cdtlz.py

示例6: get_sharp_TE_airfoil

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import expand_dims [as 別名]
def get_sharp_TE_airfoil(self):
        # Returns a version of the airfoil with a sharp trailing edge.

        upper_original_coors = self.upper_coordinates()  # Note: includes leading edge point, be careful about duplicates
        lower_original_coors = self.lower_coordinates()  # Note: includes leading edge point, be careful about duplicates

        # Find data about the TE

        # Get the scale factor
        x_mcl = self.mcl_coordinates[:, 0]
        x_max = np.max(x_mcl)
        x_min = np.min(x_mcl)
        scale_factor = (x_mcl - x_min) / (x_max - x_min)  # linear contraction

        # Do the contraction
        upper_minus_mcl_adjusted = self.upper_minus_mcl - self.upper_minus_mcl[-1, :] * np.expand_dims(scale_factor, 1)

        # Recreate coordinates
        upper_coordinates_adjusted = np.flipud(self.mcl_coordinates + upper_minus_mcl_adjusted)
        lower_coordinates_adjusted = self.mcl_coordinates - upper_minus_mcl_adjusted

        coordinates = np.vstack((
            upper_coordinates_adjusted[:-1, :],
            lower_coordinates_adjusted
        ))

        # Make a new airfoil with the coordinates
        name = self.name + ", with sharp TE"
        new_airfoil = Airfoil(name=name, coordinates=coordinates, repanel=False)

        return new_airfoil 
開發者ID:peterdsharpe,項目名稱:AeroSandbox,代碼行數:33,代碼來源:geometry.py

示例7: angle_axis_rotation_matrix

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import expand_dims [as 別名]
def angle_axis_rotation_matrix(angle, axis, axis_already_normalized=False):
    # Gives the rotation matrix from an angle and an axis.
    # An implmentation of https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle
    # Inputs:
    #   * angle: can be one angle or a vector (1d ndarray) of angles. Given in radians.
    #   * axis: a 1d numpy array of length 3 (x,y,z). Represents the angle.
    #   * axis_already_normalized: boolean, skips normalization for speed if you flag this true.
    # Outputs:
    #   * If angle is a scalar, returns a 3x3 rotation matrix.
    #   * If angle is a vector, returns a 3x3xN rotation matrix.
    if not axis_already_normalized:
        axis = axis / np.linalg.norm(axis)

    sintheta = np.sin(angle)
    costheta = np.cos(angle)
    cpm = np.array(
        [[0, -axis[2], axis[1]],
         [axis[2], 0, -axis[0]],
         [-axis[1], axis[0], 0]]
    )  # The cross product matrix of the rotation axis vector
    outer_axis = np.outer(axis, axis)

    angle = np.array(angle)  # make sure angle is a ndarray
    if len(angle.shape) == 0:  # is a scalar
        rot_matrix = costheta * np.eye(3) + sintheta * cpm + (1 - costheta) * outer_axis
        return rot_matrix
    else:  # angle is assumed to be a 1d ndarray
        rot_matrix = costheta * np.expand_dims(np.eye(3), 2) + sintheta * np.expand_dims(cpm, 2) + (
                1 - costheta) * np.expand_dims(outer_axis, 2)
        return rot_matrix 
開發者ID:peterdsharpe,項目名稱:AeroSandbox,代碼行數:32,代碼來源:geometry.py

示例8: taylor_approx

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import expand_dims [as 別名]
def taylor_approx(target, stencil, values):
  """Use taylor series to approximate up to second order derivatives.

  Args:
    target: An array of shape (..., n), a batch of n-dimensional points
      where one wants to approximate function value and derivatives.
    stencil: An array of shape broadcastable to (..., k, n), for each target
      point a set of k = triangle(n + 1) points to use on its approximation.
    values: An array of shape broadcastable to (..., k), the function value at
      each of the stencil points.

  Returns:
    An array of shape (..., k), for each target point the approximated
    function value, gradient and hessian evaluated at that point (flattened
    and in the same order as returned by derivative_names).
  """
  # Broadcast arrays to their required shape.
  batch_shape, ndim = target.shape[:-1], target.shape[-1]
  stencil = np.broadcast_to(stencil, batch_shape + (triangular(ndim + 1), ndim))
  values = np.broadcast_to(values, stencil.shape[:-1])

  # Subtract target from each stencil point.
  delta_x = stencil - np.expand_dims(target, axis=-2)
  delta_xy = np.matmul(
      np.expand_dims(delta_x, axis=-1), np.expand_dims(delta_x, axis=-2))
  i = np.arange(ndim)
  j, k = np.triu_indices(ndim, k=1)

  # Build coefficients for the Taylor series equations, namely:
  #   f(stencil) = coeffs @ [f(target), df/d0(target), ...]
  coeffs = np.concatenate([
      np.ones(delta_x.shape[:-1] + (1,)),  # f(target)
      delta_x,  # df/di(target)
      delta_xy[..., i, i] / 2,  # d^2f/di^2(target)
      delta_xy[..., j, k],  # d^2f/{dj dk}(target)
  ], axis=-1)

  # Then: [f(target), df/d0(target), ...] = coeffs^{-1} @ f(stencil)
  return np.squeeze(
      np.matmul(np.linalg.inv(coeffs), values[..., np.newaxis]), axis=-1) 
開發者ID:google,項目名稱:tf-quant-finance,代碼行數:42,代碼來源:methods.py

示例9: non_uniform_approx_nearest

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import expand_dims [as 別名]
def non_uniform_approx_nearest(points, values):
  """Approximate derivatives using nearest points in non-uniform grid."""
  ndim = points.shape[-1]
  k = triangular(ndim + 1)
  diffs = np.expand_dims(points, axis=0) - np.expand_dims(points, axis=1)
  norms = np.linalg.norm(diffs, axis=-1)
  nearest_k = np.argpartition(norms, k)[..., :k]
  return taylor_approx(points, points[nearest_k], values[nearest_k]) 
開發者ID:google,項目名稱:tf-quant-finance,代碼行數:10,代碼來源:methods.py

示例10: rbf_covariance

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import expand_dims [as 別名]
def rbf_covariance(kernel_params, x, xp):
    output_scale = np.exp(kernel_params[0])
    lengthscales = np.exp(kernel_params[1:])
    diffs = np.expand_dims(x /lengthscales, 1)\
          - np.expand_dims(xp/lengthscales, 0)
    return output_scale * np.exp(-0.5 * np.sum(diffs**2, axis=2)) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:8,代碼來源:gaussian_process.py

示例11: make_nn_funs

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import expand_dims [as 別名]
def make_nn_funs(layer_sizes, L2_reg, noise_variance, nonlinearity=np.tanh):
    """These functions implement a standard multi-layer perceptron,
    vectorized over both training examples and weight samples."""
    shapes = list(zip(layer_sizes[:-1], layer_sizes[1:]))
    num_weights = sum((m+1)*n for m, n in shapes)

    def unpack_layers(weights):
        num_weight_sets = len(weights)
        for m, n in shapes:
            yield weights[:, :m*n]     .reshape((num_weight_sets, m, n)),\
                  weights[:, m*n:m*n+n].reshape((num_weight_sets, 1, n))
            weights = weights[:, (m+1)*n:]

    def predictions(weights, inputs):
        """weights is shape (num_weight_samples x num_weights)
           inputs  is shape (num_datapoints x D)"""
        inputs = np.expand_dims(inputs, 0)
        for W, b in unpack_layers(weights):
            outputs = np.einsum('mnd,mdo->mno', inputs, W) + b
            inputs = nonlinearity(outputs)
        return outputs

    def logprob(weights, inputs, targets):
        log_prior = -L2_reg * np.sum(weights**2, axis=1)
        preds = predictions(weights, inputs)
        log_lik = -np.sum((preds - targets)**2, axis=1)[:, 0] / noise_variance
        return log_prior + log_lik

    return num_weights, predictions, logprob 
開發者ID:HIPS,項目名稱:autograd,代碼行數:31,代碼來源:bayesian_neural_net.py

示例12: covgrad

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import expand_dims [as 別名]
def covgrad(x, mean, cov, allow_singular=False):
    if allow_singular:
        raise NotImplementedError("The multivariate normal pdf is not "
                "differentiable w.r.t. a singular covariance matix")
    J = np.linalg.inv(cov)
    solved = np.matmul(J, np.expand_dims(x - mean, -1))
    return 1./2 * (generalized_outer_product(solved) - J) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:9,代碼來源:multivariate_normal.py

示例13: fwd_grad_logsumexp

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import expand_dims [as 別名]
def fwd_grad_logsumexp(g, ans, x, axis=None, b=1.0, keepdims=False):
    if not keepdims:
        if isinstance(axis, int):
            ans = np.expand_dims(ans, axis)
        elif isinstance(axis, tuple):
            for ax in sorted(axis):
                ans = np.expand_dims(ans, ax)
    return np.sum(g * b * np.exp(x - ans), axis=axis, keepdims=keepdims) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:10,代碼來源:special.py

示例14: draw

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import expand_dims [as 別名]
def draw(self):
        # Draw the airplane in a new window.

        # Using PyVista Polydata format
        vertices = np.empty((0, 3))
        faces = np.empty((0))

        for wing in self.wings:
            wing_vertices = np.empty((0, 3))
            wing_tri_faces = np.empty((0, 4))
            wing_quad_faces = np.empty((0, 5))
            for i in range(len(wing.xsecs) - 1):
                is_last_section = i == len(wing.xsecs) - 2

                le_start = wing.xsecs[i].xyz_le + wing.xyz_le
                te_start = wing.xsecs[i].xyz_te() + wing.xyz_le
                wing_vertices = np.vstack((wing_vertices, le_start, te_start))

                wing_quad_faces = np.vstack((
                    wing_quad_faces,
                    np.expand_dims(np.array([4, 2 * i + 0, 2 * i + 1, 2 * i + 3, 2 * i + 2]), 0)
                ))

                if is_last_section:
                    le_end = wing.xsecs[i + 1].xyz_le + wing.xyz_le
                    te_end = wing.xsecs[i + 1].xyz_te() + wing.xyz_le
                    wing_vertices = np.vstack((wing_vertices, le_end, te_end))

            vertices_starting_index = len(vertices)
            wing_quad_faces_reformatted = np.ndarray.copy(wing_quad_faces)
            wing_quad_faces_reformatted[:, 1:] = wing_quad_faces[:, 1:] + vertices_starting_index
            wing_quad_faces_reformatted = np.reshape(wing_quad_faces_reformatted, (-1), order='C')
            vertices = np.vstack((vertices, wing_vertices))
            faces = np.hstack((faces, wing_quad_faces_reformatted))

            if wing.symmetric:
                vertices_starting_index = len(vertices)
                wing_vertices = reflect_over_XZ_plane(wing_vertices)
                wing_quad_faces_reformatted = np.ndarray.copy(wing_quad_faces)
                wing_quad_faces_reformatted[:, 1:] = wing_quad_faces[:, 1:] + vertices_starting_index
                wing_quad_faces_reformatted = np.reshape(wing_quad_faces_reformatted, (-1), order='C')
                vertices = np.vstack((vertices, wing_vertices))
                faces = np.hstack((faces, wing_quad_faces_reformatted))

        plotter = pv.Plotter()

        wing_surfaces = pv.PolyData(vertices, faces)
        plotter.add_mesh(wing_surfaces, color='#7EFC8F', show_edges=True, smooth_shading=True)

        xyz_ref = pv.PolyData(self.xyz_ref)
        plotter.add_points(xyz_ref, color='#50C7C7', point_size=10)

        plotter.show_grid(color='#444444')
        plotter.set_background(color="black")
        plotter.show(cpos=(-1, -1, 1), full_screen=False) 
開發者ID:peterdsharpe,項目名稱:AeroSandbox,代碼行數:57,代碼來源:geometry.py


注:本文中的autograd.numpy.expand_dims方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。