當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.exp方法代碼示例

本文整理匯總了Python中autograd.numpy.exp方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.exp方法的具體用法?Python numpy.exp怎麽用?Python numpy.exp使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在autograd.numpy的用法示例。


在下文中一共展示了numpy.exp方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import exp [as 別名]
def __init__(self, n_var=2, n_constr=2, **kwargs):
        super().__init__(n_var, n_constr, **kwargs)

        a, b = anp.zeros(n_constr + 1), anp.zeros(n_constr + 1)
        a[0], b[0] = 1, 1
        delta = 1 / (n_constr + 1)
        alpha = delta

        for j in range(n_constr):
            beta = a[j] * anp.exp(-b[j] * alpha)
            a[j + 1] = (a[j] + beta) / 2
            b[j + 1] = - 1 / alpha * anp.log(beta / a[j + 1])

            alpha += delta

        self.a = a[1:]
        self.b = b[1:] 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:19,代碼來源:ctp.py

示例2: simple_admixture_3pop

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import exp [as 別名]
def simple_admixture_3pop(x=None):
    if x is None:
        x = np.random.normal(size=7)
    t = np.cumsum(np.exp(x[:5]))
    p = 1.0 / (1.0 + np.exp(x[5:]))

    model = momi.DemographicModel(1., .25)
    model.add_leaf("b")
    model.add_leaf("a")
    model.add_leaf("c")
    model.move_lineages("a", "c", t[1], p=1.-p[1])
    model.move_lineages("a", "d", t[0], p=1.-p[0])
    model.move_lineages("c", "d", t[2])
    model.move_lineages("d", "b", t[3])
    model.move_lineages("a", "b", t[4])
    return model 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:18,代碼來源:demo_utils.py

示例3: _compute_loss

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import exp [as 別名]
def _compute_loss(self):
        """Compute and store loss value for the given batch of examples."""
        if self._loss_computed:
            return
        self._compute_distances()

        # NLL loss from the NIPS paper.
        exp_negative_distances = np.exp(-self.euclidean_dists)  # (1 + neg_size, batch_size)
        # Remove the value for the true edge (u,v) from the partition function
        Z = exp_negative_distances[1:].sum(axis=0)  # (batch_size)
        self.exp_negative_distances = exp_negative_distances  # (1 + neg_size, batch_size)
        self.Z = Z # (batch_size)

        self.pos_loss = self.euclidean_dists[0].sum()
        self.neg_loss = np.log(self.Z).sum()
        self.loss = self.pos_loss + self.neg_loss  # scalar


        self._loss_computed = True 
開發者ID:dalab,項目名稱:hyperbolic_cones,代碼行數:21,代碼來源:eucl_simple_model.py

示例4: _nll_loss_fn

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import exp [as 別名]
def _nll_loss_fn(poincare_dists):
        """
        Parameters
        ----------
        poincare_dists : numpy.array
            All distances d(u,v) and d(u,v'), where v' is negative. Shape (1 + negative_size).

        Returns
        ----------
        log-likelihood loss function from the NIPS paper, Eq (6).
        """
        exp_negative_distances = grad_np.exp(-poincare_dists)

        # Remove the value for the true edge (u,v) from the partition function
        # return -grad_np.log(exp_negative_distances[0] / (- exp_negative_distances[0] + exp_negative_distances.sum()))
        return poincare_dists[0] + grad_np.log(exp_negative_distances[1:].sum()) 
開發者ID:dalab,項目名稱:hyperbolic_cones,代碼行數:18,代碼來源:poincare_model.py

示例5: softplus

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import exp [as 別名]
def softplus(x):
    """ Numerically stable transform from real line to positive reals
    Returns np.log(1.0 + np.exp(x))
    Autograd friendly and fully vectorized
    
    @param x: array of values in (-\infty, +\infty)
    @return ans : array of values in (0, +\infty), same size as x
    """
    if not isinstance(x, float):
        mask1 = x > 0
        mask0 = np.logical_not(mask1)
        out = np.zeros_like(x)
        out[mask0] = np.log1p(np.exp(x[mask0]))
        out[mask1] = x[mask1] + np.log1p(np.exp(-x[mask1]))
        return out
    if x > 0:
        return x + np.log1p(np.exp(-x))
    else:
        return np.log1p(np.exp(x)) 
開發者ID:dtak,項目名稱:tree-regularization-public,代碼行數:21,代碼來源:model.py

示例6: callback

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import exp [as 別名]
def callback(params, t, g):
        print("Iteration {} lower bound {}".format(t, -objective(params, t)))

        plt.cla()
        target_distribution = lambda x: np.exp(log_density(x, t))
        var_distribution    = lambda x: np.exp(variational_log_density(params, x))
        plot_isocontours(ax, target_distribution)
        plot_isocontours(ax, var_distribution, cmap=plt.cm.bone)
        ax.set_autoscale_on(False)

        rs = npr.RandomState(0)
        samples = variational_sampler(params, num_plotting_samples, rs)
        plt.plot(samples[:, 0], samples[:, 1], 'x')

        plt.draw()
        plt.pause(1.0/30.0) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:18,代碼來源:mixture_variational_inference.py

示例7: black_box_variational_inference

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import exp [as 別名]
def black_box_variational_inference(logprob, D, num_samples):
    """Implements http://arxiv.org/abs/1401.0118, and uses the
    local reparameterization trick from http://arxiv.org/abs/1506.02557"""

    def unpack_params(params):
        # Variational dist is a diagonal Gaussian.
        mean, log_std = params[:D], params[D:]
        return mean, log_std

    def gaussian_entropy(log_std):
        return 0.5 * D * (1.0 + np.log(2*np.pi)) + np.sum(log_std)

    rs = npr.RandomState(0)
    def variational_objective(params, t):
        """Provides a stochastic estimate of the variational lower bound."""
        mean, log_std = unpack_params(params)
        samples = rs.randn(num_samples, D) * np.exp(log_std) + mean
        lower_bound = gaussian_entropy(log_std) + np.mean(logprob(samples, t))
        return -lower_bound

    gradient = grad(variational_objective)

    return variational_objective, gradient, unpack_params 
開發者ID:HIPS,項目名稱:autograd,代碼行數:25,代碼來源:black_box_svi.py

示例8: _evaluate

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import exp [as 別名]
def _evaluate(self, x, out, *args, **kwargs):
        part1 = -1. * self.a * anp.exp(-1. * self.b * anp.sqrt((1. / self.n_var) * anp.sum(x * x, axis=1)))
        part2 = -1. * anp.exp((1. / self.n_var) * anp.sum(anp.cos(self.c * x), axis=1))
        out["F"] = part1 + part2 + self.a + anp.exp(1) 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:6,代碼來源:ackley.py

示例9: _evaluate

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import exp [as 別名]
def _evaluate(self, x, out, *args, **kwargs):
        out["F"] = 1 - anp.exp(-x ** 2) * anp.sin(2 * anp.pi * x) ** 2 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:4,代碼來源:multimodal.py

示例10: _evaluate

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import exp [as 別名]
def _evaluate(self, x, out, *args, **kwargs):
        l = []
        for i in range(2):
            l.append(-10 * anp.exp(-0.2 * anp.sqrt(anp.square(x[:, i]) + anp.square(x[:, i + 1]))))
        f1 = anp.sum(anp.column_stack(l), axis=1)

        f2 = anp.sum(anp.power(anp.abs(x), 0.8) + 5 * anp.sin(anp.power(x, 3)), axis=1)

        out["F"] = anp.column_stack([f1, f2]) 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:11,代碼來源:kursawe.py

示例11: _evaluate

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import exp [as 別名]
def _evaluate(self, x, out, *args, **kwargs):
        f1 = 1 - anp.exp(-4 * x[:, 0]) * anp.power(anp.sin(6 * anp.pi * x[:, 0]), 6)
        g = 1 + 9.0 * anp.power(anp.sum(x[:, 1:], axis=1) / (self.n_var - 1.0), 0.25)
        f2 = g * (1 - anp.power(f1 / g, 2))

        out["F"] = anp.column_stack([f1, f2]) 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:8,代碼來源:zdt.py

示例12: gaussian

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import exp [as 別名]
def gaussian(y, x, sigma=1, integrate=True, bbox=None):
    """Circular Gaussian Function

    Parameters
    ----------
    y: float
        Vertical coordinate of the center
    x: float
        Horizontal coordinate of the center
    sigma: float
        Standard deviation of the gaussian
    integrate: bool
        Whether pixel integration is performed
    bbox: Box
        Bounding box over which to evaluate the function

    Returns
    -------
    result: array
        A 2D circular gaussian sampled at the coordinates `(y_i, x_j)`
        for all i and j in `shape`.
    """
    Y = np.arange(bbox.shape[1]) + bbox.origin[1]
    X = np.arange(bbox.shape[2]) + bbox.origin[2]

    def f(X):
        if not integrate:
            return np.exp(-(X ** 2) / (2 * sigma ** 2))
        else:
            sqrt2 = np.sqrt(2)
            return (
                np.sqrt(np.pi / 2)
                * sigma
                * (
                    scipy.special.erf((0.5 - X) / (sqrt2 * sigma))
                    + scipy.special.erf((2 * X + 1) / (2 * sqrt2 * sigma))
                )
            )

    return (f(Y - y)[:, None] * f(X - x)[None, :])[None, :, :] 
開發者ID:pmelchior,項目名稱:scarlet,代碼行數:42,代碼來源:psf.py

示例13: _shift_morph

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import exp [as 別名]
def _shift_morph(self, shift, morph):
        if shift is not None:
            X = fft.Fourier(morph)
            X_fft = X.fft(self.fft_shape, (0, 1))

            # Apply shift in Fourier
            result_fft = (
                X_fft
                * np.exp(self.shifter_y[:, None] * shift[0])
                * np.exp(self.shifter_x[None, :] * shift[1])
            )

            X = fft.Fourier.from_fft(result_fft, self.fft_shape, X.shape, [0, 1])
            return np.real(X.image)
        return morph 
開發者ID:pmelchior,項目名稱:scarlet,代碼行數:17,代碼來源:component.py

示例14: kernel

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import exp [as 別名]
def kernel(X, Xp, hyp):
    output_scale = np.exp(hyp[0])
    lengthscales = np.sqrt(np.exp(hyp[1:]))
    X = X/lengthscales
    Xp = Xp/lengthscales
    X_SumSquare = np.sum(np.square(X),axis=1);
    Xp_SumSquare = np.sum(np.square(Xp),axis=1);
    mul = np.dot(X,Xp.T);
    dists = X_SumSquare[:,np.newaxis]+Xp_SumSquare-2.0*mul
    return output_scale * np.exp(-0.5 * dists) 
開發者ID:maziarraissi,項目名稱:ParametricGP,代碼行數:12,代碼來源:Utilities.py

示例15: heston_log_st_mgf

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import exp [as 別名]
def heston_log_st_mgf(u, t, r, q, S0, V0, theta, k, sigma, rho):
    dt = np.sqrt((sigma ** 2) * (u - u ** 2) + (k - rho * sigma * u) ** 2)
    beta = k - u * rho * sigma
    g = (beta - dt) / (beta + dt)
    D_t = (beta - dt) / (sigma ** 2) * ((1 - np.exp(-dt * t)) / (1 - g * np.exp(-dt * t)))
    C_t = u * (r - q) * t + k * theta / (sigma ** 2) * (
        (beta - dt) * t - 2 * np.log((1 - g * np.exp(-dt * t)) / (1 - g)))
    return np.exp(C_t + D_t * V0 + u * np.log(S0)) 
開發者ID:arraystream,項目名稱:fftoptionlib,代碼行數:10,代碼來源:moment_generating_funs.py


注:本文中的autograd.numpy.exp方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。