本文整理匯總了Python中autograd.numpy.dot方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.dot方法的具體用法?Python numpy.dot怎麽用?Python numpy.dot使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類autograd.numpy
的用法示例。
在下文中一共展示了numpy.dot方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: objective
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import dot [as 別名]
def objective(self, w):
obj = 0
N = float(sum([np.sum(d[1]) for d in self.data_list]))
for F,S in self.data_list:
psi = np.dot(F, w)
lam = self.link(psi)
obj -= np.sum(S * np.log(lam) -lam*self.dt) / N
# assert np.isfinite(ll)
# Add penalties
obj += (0.5 * np.sum(w[1:]**2) / self.sigma**2) / N
obj += np.sum(np.abs(w[1:]) * self.lmbda) / N
# assert np.isfinite(obj)
return obj
示例2: check_gradient
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import dot [as 別名]
def check_gradient(f, x):
print(x, "\n", f(x))
print("# grad2")
grad2 = Gradient(f)(x)
print("# building grad1")
g = grad(f)
print("# computing grad1")
grad1 = g(x)
print("gradient1\n", grad1, "\ngradient2\n", grad2)
np.allclose(grad1, grad2)
# check Hessian vector product
y = np.random.normal(size=x.shape)
gdot = lambda u: np.dot(g(u), y)
hess1, hess2 = grad(gdot)(x), Gradient(gdot)(x)
print("hess1\n", hess1, "\nhess2\n", hess2)
np.allclose(hess1, hess2)
示例3: generate_data
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import dot [as 別名]
def generate_data(model_params, T = 5, rs = npr.RandomState(0)):
mu0, Sigma0, A, Q, C, R = model_params
Dx = mu0.shape[0]
Dy = R.shape[0]
x_true = np.zeros((T,Dx))
y_true = np.zeros((T,Dy))
for t in range(T):
if t > 0:
x_true[t,:] = rs.multivariate_normal(np.dot(A,x_true[t-1,:]),Q)
else:
x_true[0,:] = rs.multivariate_normal(mu0,Sigma0)
y_true[t,:] = rs.multivariate_normal(np.dot(C,x_true[t,:]),R)
return x_true, y_true
示例4: average_path_length
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import dot [as 別名]
def average_path_length(tree, X):
"""Compute average path length: cost of simulating the average
example; this is used in the objective function.
@param tree: DecisionTreeClassifier instance
@param X: NumPy array (D x N)
D := number of dimensions
N := number of examples
@return path_length: float
average path length
"""
leaf_indices = tree.apply(X)
leaf_counts = np.bincount(leaf_indices)
leaf_i = np.arange(tree.tree_.node_count)
path_length = np.dot(leaf_i, leaf_counts) / float(X.shape[0])
return path_length
示例5: log_prior
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import dot [as 別名]
def log_prior(self):
# Normal N(mu | mu_0, Sigma / kappa_0)
from scipy.linalg import solve_triangular
sigma = np.linalg.inv(self.J_0)
mu = sigma.dot(self.h_0)
S_chol = np.linalg.cholesky(sigma)
# Stack log pi and W
X = np.vstack((self.logpi, self.W)).T
lp = 0
for d in range(self.D_out):
x = solve_triangular(S_chol, X[d] - mu, lower=True)
lp += -1. / 2. * np.dot(x, x) \
- self.D_in / 2 * np.log(2 * np.pi) \
- np.log(S_chol.diagonal()).sum()
return lp
### HMC
示例6: get_log_trans_matrices
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import dot [as 別名]
def get_log_trans_matrices(self, X):
"""
Get log transition matrices as a function of X
:param X: inputs/covariates
:return: stack of transition matrices log A[t] \in Kin x Kout
"""
# compute the contribution of the covariate to transition matrix
psi_X = np.dot(X, self.W)
# add the (T x Kout) and (Kin x Kout) matrices together such that they
# broadcast into a (T x Kin x Kout) stack of matrices
psi = psi_X[:, None, :] + self.logpi
# apply softmax and normalize over outputs
log_trans_matrices = psi - amisc.logsumexp(psi, axis=2, keepdims=True)
return log_trans_matrices
示例7: joint_log_probability
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import dot [as 別名]
def joint_log_probability(self, logpi, W, stateseqs, covseqs):
K, D = self.num_states, self.covariate_dim
# Compute the objective
ll = 0
for z, x in zip(stateseqs, covseqs):
T = z.size
assert x.ndim == 2 and x.shape[0] == T - 1
z_prev = one_hot(z[:-1], K)
z_next = one_hot(z[1:], K)
# Numerator
tmp = anp.dot(z_prev, logpi) + anp.dot(x, W)
ll += anp.sum(tmp * z_next)
# Denominator
Z = amisc.logsumexp(tmp, axis=1)
ll -= anp.sum(Z)
return ll
示例8: make_nn_funs
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import dot [as 別名]
def make_nn_funs(input_shape, layer_specs, L2_reg):
parser = WeightsParser()
cur_shape = input_shape
for layer in layer_specs:
N_weights, cur_shape = layer.build_weights_dict(cur_shape)
parser.add_weights(layer, (N_weights,))
def predictions(W_vect, inputs):
"""Outputs normalized log-probabilities.
shape of inputs : [data, color, y, x]"""
cur_units = inputs
for layer in layer_specs:
cur_weights = parser.get(W_vect, layer)
cur_units = layer.forward_pass(cur_units, cur_weights)
return cur_units
def loss(W_vect, X, T):
log_prior = -L2_reg * np.dot(W_vect, W_vect)
log_lik = np.sum(predictions(W_vect, X) * T)
return - log_prior - log_lik
def frac_err(W_vect, X, T):
return np.mean(np.argmax(T, axis=1) != np.argmax(pred_fun(W_vect, X), axis=1))
return parser.N, predictions, loss, frac_err
示例9: setup
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import dot [as 別名]
def setup(self):
self.batch_size = 16
self.dtype = "float32"
self.D = 2**10
self.x = 0.01 * np.random.randn(self.batch_size,self.D).astype(self.dtype)
self.W1 = 0.01 * np.random.randn(self.D,self.D).astype(self.dtype)
self.b1 = 0.01 * np.random.randn(self.D).astype(self.dtype)
self.Wout = 0.01 * np.random.randn(self.D,1).astype(self.dtype)
self.bout = 0.01 * np.random.randn(1).astype(self.dtype)
self.l = (np.random.rand(self.batch_size,1) > 0.5).astype(self.dtype)
self.n = 50
def autograd_rnn(params, x, label, n):
W, b, Wout, bout = params
h1 = x
for i in range(n):
h1 = np.tanh(np.dot(h1, W) + b)
logit = np.dot(h1, Wout) + bout
loss = -np.sum(label * logit - (
logit + np.log(1 + np.exp(-logit))))
return loss
self.fn = autograd_rnn
self.grad_fn = grad(self.fn)
示例10: test_grad_and_aux
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import dot [as 別名]
def test_grad_and_aux():
A = npr.randn(5, 4)
x = npr.randn(4)
f = lambda x: (np.sum(np.dot(A, x)), x**2)
g = lambda x: np.sum(np.dot(A, x))
assert len(grad_and_aux(f)(x)) == 2
check_equivalent(grad_and_aux(f)(x)[0], grad(g)(x))
check_equivalent(grad_and_aux(f)(x)[1], x**2)
## No longer support this behavior
# def test_make_ggnvp_broadcasting():
# A = npr.randn(4, 5)
# x = npr.randn(10, 4)
# v = npr.randn(10, 4)
# fun = lambda x: np.tanh(np.dot(x, A))
# res1 = np.stack([_make_explicit_ggnvp(fun)(xi)(vi) for xi, vi in zip(x, v)])
# res2 = make_ggnvp(fun)(x)(v)
# check_equivalent(res1, res2)
示例11: optimize
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import dot [as 別名]
def optimize(self, x0, target):
"""Calculate an optimum argument of an objective function."""
x = x0
for i in range(self.maxiter):
g = self.g(x, target)
h = self.h(x, target)
if i == 0:
alpha = 0
m = g
else:
alpha = - np.dot(m, np.dot(h, g)) / np.dot(m, np.dot(h, m))
m = g + np.dot(alpha, m)
t = - np.dot(m, g) / np.dot(m, np.dot(h, m))
delta = np.dot(t, m)
x = x + delta
if np.linalg.norm(delta) < self.tol:
break
return x
示例12: kernel
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import dot [as 別名]
def kernel(X, Xp, hyp):
output_scale = np.exp(hyp[0])
lengthscales = np.sqrt(np.exp(hyp[1:]))
X = X/lengthscales
Xp = Xp/lengthscales
X_SumSquare = np.sum(np.square(X),axis=1);
Xp_SumSquare = np.sum(np.square(Xp),axis=1);
mul = np.dot(X,Xp.T);
dists = X_SumSquare[:,np.newaxis]+Xp_SumSquare-2.0*mul
return output_scale * np.exp(-0.5 * dists)
示例13: predict_kaf_nn
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import dot [as 別名]
def predict_kaf_nn(w, X, info):
"""
Compute the outputs of a KAF feedforward network.
"""
D, gamma = info
for W, b, alpha in w:
outputs = np.dot(X, W) + b
K = gauss_kernel(outputs, D, gamma)
X = np.sum(K*alpha, axis=2)
return X
示例14: dist
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import dot [as 別名]
def dist(x1, x2):
""" Compute squared euclidean distance between samples (autograd)
"""
x1p2 = np.sum(np.square(x1), 1)
x2p2 = np.sum(np.square(x2), 1)
return x1p2.reshape((-1, 1)) + x2p2.reshape((1, -1)) - 2 * np.dot(x1, x2.T)
示例15: sinkhorn
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import dot [as 別名]
def sinkhorn(w1, w2, M, reg, k):
"""Sinkhorn algorithm with fixed number of iteration (autograd)
"""
K = np.exp(-M / reg)
ui = np.ones((M.shape[0],))
vi = np.ones((M.shape[1],))
for i in range(k):
vi = w2 / (np.dot(K.T, ui))
ui = w1 / (np.dot(K, vi))
G = ui.reshape((M.shape[0], 1)) * K * vi.reshape((1, M.shape[1]))
return G