本文整理匯總了Python中autograd.numpy.cumsum方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.cumsum方法的具體用法?Python numpy.cumsum怎麽用?Python numpy.cumsum使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類autograd.numpy
的用法示例。
在下文中一共展示了numpy.cumsum方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: simple_admixture_3pop
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import cumsum [as 別名]
def simple_admixture_3pop(x=None):
if x is None:
x = np.random.normal(size=7)
t = np.cumsum(np.exp(x[:5]))
p = 1.0 / (1.0 + np.exp(x[5:]))
model = momi.DemographicModel(1., .25)
model.add_leaf("b")
model.add_leaf("a")
model.add_leaf("c")
model.move_lineages("a", "c", t[1], p=1.-p[1])
model.move_lineages("a", "d", t[0], p=1.-p[0])
model.move_lineages("c", "d", t[2])
model.move_lineages("d", "b", t[3])
model.move_lineages("a", "b", t[4])
return model
示例2: simple_admixture_demo
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import cumsum [as 別名]
def simple_admixture_demo(x=np.random.normal(size=7)):
t = np.cumsum(np.exp(x[:5]))
p = 1.0 / (1.0 + np.exp(x[5:]))
ret = momi.DemographicModel(1., .25)
ret.add_leaf("b")
ret.add_leaf("a")
ret.move_lineages("a", 2, t[1], p=1.-p[1])
ret.move_lineages("a", 3, t[0], p=1.-p[0])
ret.move_lineages(2, 3, t[2])
ret.move_lineages(3, "b", t[3])
ret.move_lineages("a", "b", t[4])
return ret
示例3: resampling
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import cumsum [as 別名]
def resampling(w, rs):
"""
Stratified resampling with "nograd_primitive" to ensure autograd
takes no derivatives through it.
"""
N = w.shape[0]
bins = np.cumsum(w)
ind = np.arange(N)
u = (ind + rs.rand(N))/N
return np.digitize(u, bins)
示例4: get_downsampled_mcl
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import cumsum [as 別名]
def get_downsampled_mcl(self, mcl_fractions):
# Returns the mean camber line in downsampled form
mcl = self.mcl_coordinates
# Find distances along mcl, assuming linear interpolation
mcl_distances_between_points = np.sqrt(
np.power(mcl[:-1, 0] - mcl[1:, 0], 2) +
np.power(mcl[:-1, 1] - mcl[1:, 1], 2)
)
mcl_distances_cumulative = np.hstack((0, np.cumsum(mcl_distances_between_points)))
mcl_distances_cumulative_normalized = mcl_distances_cumulative / mcl_distances_cumulative[-1]
mcl_downsampled_x = np.interp(
x=mcl_fractions,
xp=mcl_distances_cumulative_normalized,
fp=mcl[:, 0]
)
mcl_downsampled_y = np.interp(
x=mcl_fractions,
xp=mcl_distances_cumulative_normalized,
fp=mcl[:, 1]
)
mcl_downsampled = np.column_stack((mcl_downsampled_x, mcl_downsampled_y))
return mcl_downsampled
示例5: repanel_current_airfoil
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import cumsum [as 別名]
def repanel_current_airfoil(self, n_points_per_side=100):
# Returns a repaneled version of the airfoil with cosine-spaced coordinates on the upper and lower surfaces.
# Inputs:
# # n_points_per_side is the number of points PER SIDE (upper and lower) of the airfoil. 100 is a good number.
# Notes: The number of points defining the final airfoil will be n_points_per_side*2-1,
# since one point (the leading edge point) is shared by both the upper and lower surfaces.
upper_original_coors = self.upper_coordinates() # Note: includes leading edge point, be careful about duplicates
lower_original_coors = self.lower_coordinates() # Note: includes leading edge point, be careful about duplicates
# Find distances between coordinates, assuming linear interpolation
upper_distances_between_points = np.sqrt(
np.power(upper_original_coors[:-1, 0] - upper_original_coors[1:, 0], 2) +
np.power(upper_original_coors[:-1, 1] - upper_original_coors[1:, 1], 2)
)
lower_distances_between_points = np.sqrt(
np.power(lower_original_coors[:-1, 0] - lower_original_coors[1:, 0], 2) +
np.power(lower_original_coors[:-1, 1] - lower_original_coors[1:, 1], 2)
)
upper_distances_from_TE = np.hstack((0, np.cumsum(upper_distances_between_points)))
lower_distances_from_LE = np.hstack((0, np.cumsum(lower_distances_between_points)))
upper_distances_from_TE_normalized = upper_distances_from_TE / upper_distances_from_TE[-1]
lower_distances_from_LE_normalized = lower_distances_from_LE / lower_distances_from_LE[-1]
# Generate a cosine-spaced list of points from 0 to 1
s = cosspace(n_points=n_points_per_side)
x_upper_func = sp_interp.PchipInterpolator(x=upper_distances_from_TE_normalized, y=upper_original_coors[:, 0])
y_upper_func = sp_interp.PchipInterpolator(x=upper_distances_from_TE_normalized, y=upper_original_coors[:, 1])
x_lower_func = sp_interp.PchipInterpolator(x=lower_distances_from_LE_normalized, y=lower_original_coors[:, 0])
y_lower_func = sp_interp.PchipInterpolator(x=lower_distances_from_LE_normalized, y=lower_original_coors[:, 1])
x_coors = np.hstack((x_upper_func(s), x_lower_func(s)[1:]))
y_coors = np.hstack((y_upper_func(s), y_lower_func(s)[1:]))
coordinates = np.column_stack((x_coors, y_coors))
self.coordinates = coordinates
示例6: test_cumsum_axis0
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import cumsum [as 別名]
def test_cumsum_axis0():
def fun(x): return np.cumsum(x, axis=0)
mat = npr.randn(10, 11)
check_grads(fun)(mat)
示例7: test_cumsum_axis1
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import cumsum [as 別名]
def test_cumsum_axis1():
def fun(x): return np.cumsum(x, axis=1)
mat = npr.randn(10, 11)
check_grads(fun)(mat)
示例8: test_cumsum_1d
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import cumsum [as 別名]
def test_cumsum_1d():
def fun(x): return np.cumsum(x)
mat = npr.randn(10)
check_grads(fun)(mat)
示例9: test_cumsum_no_axis
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import cumsum [as 別名]
def test_cumsum_no_axis():
def fun(x): return np.cumsum(x)
mat = npr.randn(10, 11)
check_grads(fun)(mat)
示例10: _split
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import cumsum [as 別名]
def _split(x, shapes):
x_split = np.split(x, np.cumsum([np.prod(shape) for shape in shapes[:-1]]))
optim_vars = [var.reshape(*shape) for (var, shape) in zip(x_split, shapes)]
return optim_vars
示例11: simple_five_pop_demo
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import cumsum [as 別名]
def simple_five_pop_demo(x=np.random.normal(size=30)):
assert len(x) == 30
# make all params positive
x = np.exp(x)
# # allow negative growth rates
# for i in range(15,20):
# x[i] = np.log(x[i])
# # make times increasing
# for i in range(1,15):
# x[i] = x[i] + x[i-1]
t = np.cumsum(x[:15])
# allow negative growth rates
g = np.log(x[15:20])
model = momi.DemographicModel(1.0, .25)
for pop in range(1, 6):
model.add_leaf(pop)
model.set_size(5, t[0], g=g[0])
model.set_size(4, t[1], g=g[1])
model.set_size(3, t[2], g=g[2])
model.set_size(2, t[3], g=g[3])
model.set_size(1, t[4], g=g[4])
model.move_lineages(5, 4, t=t[5], N=x[20])
model.set_size(3, t=t[6], N=x[21])
model.set_size(2, t=t[7], N=x[22])
model.set_size(1, t[8], N=x[23])
model.move_lineages(4, 3, t[9], N=x[24])
model.set_size(2, t[10], N=x[25])
model.set_size(1, t[11], N=x[26])
model.move_lineages(3, 2, t[12], N=x[27])
model.set_size(1, t[13], N=x[28])
model.move_lineages(2, 1, t[14], N=x[29])
return model
## number of edges is 2n-1
#events_list = [('-eg', t[0], 5, g[0]),
# ('-eg', t[1], 4, g[1]),
# ('-eg', t[2], 3, g[2]),
# ('-eg', t[3], 2, g[3]),
# ('-eg', t[4], 1, g[4]),
# ('-ej', t[5], 5, 4), ('-en', t[5], 4, x[20]),
# ('-en', t[6], 3, x[21]),
# ('-en', t[7], 2, x[22]),
# ('-en', t[8], 1, x[23]),
# ('-ej', t[9], 4, 3), ('-en', t[9], 3, x[24]),
# ('-en', t[10], 2, x[25]),
# ('-en', t[11], 1, x[26]),
# ('-ej', t[12], 3, 2), ('-en', t[12], 2, x[27]),
# ('-en', t[13], 1, x[28]),
# ('-ej', t[14], 2, 1), ('-en', t[14], 1, x[29])]
#demo = make_demo_hist(events_list, sampled_pops=list(
# range(1, len(n_lins) + 1)), sampled_n=n_lins)
##demo = make_demography(events_list, sampled_pops = list(range(1,len(n_lins)+1)), sampled_n = n_lins)
##demo = demo.rescaled(1e4)
#return demo
示例12: sim_q
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import cumsum [as 別名]
def sim_q(prop_params, model_params, y, smc_obj, rs, verbose=False):
"""
Simulates a single sample from the VSMC approximation.
Requires an SMC object with 2 member functions:
-- sim_prop(t, x_{t-1}, y, prop_params, model_params, rs)
-- log_weights(t, x_t, x_{t-1}, y, prop_params, model_params)
"""
# Extract constants
T = y.shape[0]
Dx = smc_obj.Dx
N = smc_obj.N
# Initialize SMC
X = np.zeros((N,T,Dx))
logW = np.zeros(N)
W = np.zeros((N,T))
ESS = np.zeros(T)
for t in range(T):
# Resampling
if t > 0:
ancestors = resampling(W[:,t-1], rs)
X[:,:t,:] = X[ancestors,:t,:]
# Propagation
X[:,t,:] = smc_obj.sim_prop(t, X[:,t-1,:], y, prop_params, model_params, rs)
# Weighting
logW = smc_obj.log_weights(t, X[:,t,:], X[:,t-1,:], y, prop_params, model_params)
max_logW = np.max(logW)
W[:,t] = np.exp(logW-max_logW)
W[:,t] /= np.sum(W[:,t])
ESS[t] = 1./np.sum(W[:,t]**2)
# Sample from the empirical approximation
bins = np.cumsum(W[:,-1])
u = rs.rand()
B = np.digitize(u,bins)
if verbose:
print('Mean ESS', np.mean(ESS)/N)
print('Min ESS', np.min(ESS))
return X[B,:,:]
示例13: get_repaneled_airfoil
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import cumsum [as 別名]
def get_repaneled_airfoil(self, n_points_per_side=100):
# Returns a repaneled version of the airfoil with cosine-spaced coordinates on the upper and lower surfaces.
# Inputs:
# # n_points_per_side is the number of points PER SIDE (upper and lower) of the airfoil. 100 is a good number.
# Notes: The number of points defining the final airfoil will be n_points_per_side*2-1,
# since one point (the leading edge point) is shared by both the upper and lower surfaces.
upper_original_coors = self.upper_coordinates() # Note: includes leading edge point, be careful about duplicates
lower_original_coors = self.lower_coordinates() # Note: includes leading edge point, be careful about duplicates
# Find distances between coordinates, assuming linear interpolation
upper_distances_between_points = np.sqrt(
np.power(upper_original_coors[:-1, 0] - upper_original_coors[1:, 0], 2) +
np.power(upper_original_coors[:-1, 1] - upper_original_coors[1:, 1], 2)
)
lower_distances_between_points = np.sqrt(
np.power(lower_original_coors[:-1, 0] - lower_original_coors[1:, 0], 2) +
np.power(lower_original_coors[:-1, 1] - lower_original_coors[1:, 1], 2)
)
upper_distances_from_TE = np.hstack((0, np.cumsum(upper_distances_between_points)))
lower_distances_from_LE = np.hstack((0, np.cumsum(lower_distances_between_points)))
upper_distances_from_TE_normalized = upper_distances_from_TE / upper_distances_from_TE[-1]
lower_distances_from_LE_normalized = lower_distances_from_LE / lower_distances_from_LE[-1]
# Generate a cosine-spaced list of points from 0 to 1
s = cosspace(n_points=n_points_per_side)
x_upper_func = sp_interp.PchipInterpolator(x=upper_distances_from_TE_normalized, y=upper_original_coors[:, 0])
y_upper_func = sp_interp.PchipInterpolator(x=upper_distances_from_TE_normalized, y=upper_original_coors[:, 1])
x_lower_func = sp_interp.PchipInterpolator(x=lower_distances_from_LE_normalized, y=lower_original_coors[:, 0])
y_lower_func = sp_interp.PchipInterpolator(x=lower_distances_from_LE_normalized, y=lower_original_coors[:, 1])
x_coors = np.hstack((x_upper_func(s), x_lower_func(s)[1:]))
y_coors = np.hstack((y_upper_func(s), y_lower_func(s)[1:]))
coordinates = np.column_stack((x_coors, y_coors))
# Make a new airfoil with the coordinates
name = self.name + ", repaneled to " + str(n_points_per_side) + " pts"
new_airfoil = Airfoil(name=name, coordinates=coordinates, repanel=False)
return new_airfoil
示例14: sample
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import cumsum [as 別名]
def sample(self, n_samples=2000, observed_states=None, random_state=None):
"""Generate random samples from the self.
Parameters
----------
n : int
Number of samples to generate.
observed_states : array
If provided, states are not sampled.
random_state: RandomState or an int seed
A random number generator instance. If None is given, the
object's random_state is used
Returns
-------
samples : array_like, length (``n_samples``, ``n_features``)
List of samples
states : array_like, shape (``n_samples``)
List of hidden states (accounting for tied states by giving
them the same index)
"""
if random_state is None:
random_state = self.random_state
random_state = check_random_state(random_state)
samples = np.zeros((n_samples, self.n_features))
states = np.zeros(n_samples)
if observed_states is None:
startprob_pdf = np.exp(np.copy(self._log_startprob))
startdist = stats.rv_discrete(name='custm',
values=(np.arange(startprob_pdf.shape[0]),
startprob_pdf),
seed=random_state)
states[0] = startdist.rvs(size=1)[0]
transmat_pdf = np.exp(np.copy(self._log_transmat))
transmat_cdf = np.cumsum(transmat_pdf, 1)
nrand = random_state.rand(n_samples)
for idx in range(1,n_samples):
newstate = (transmat_cdf[int(states[idx-1])] > nrand[idx-1]).argmax()
states[idx] = newstate
else:
states = observed_states
mu = np.copy(self._mu_)
precision = np.copy(self._precision_)
for idx in range(n_samples):
mean_ = mu[states[idx]]
covar_ = np.linalg.inv(precision[states[idx]])
samples[idx] = multivariate_normal.rvs(mean=mean_, cov=covar_,
random_state=random_state)
states = self._process_sequence(states)
return samples, states