當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.cos方法代碼示例

本文整理匯總了Python中autograd.numpy.cos方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.cos方法的具體用法?Python numpy.cos怎麽用?Python numpy.cos使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在autograd.numpy的用法示例。


在下文中一共展示了numpy.cos方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import cos [as 別名]
def __init__(self, n_var=2, n_constr=1, option="linear"):
        super().__init__(n_var=n_var, n_obj=2, n_constr=n_constr, xl=0, xu=1, type_var=anp.double)

        def g_linear(x):
            return 1 + anp.sum(x, axis=1)

        def g_multimodal(x):
            A = 10
            return 1 + A * x.shape[1] + anp.sum(x ** 2 - A * anp.cos(2 * anp.pi * x), axis=1)

        if option == "linear":
            self.calc_g = g_linear

        elif option == "multimodal":
            self.calc_g = g_multimodal
            self.xl[:, 1:] = -5.12
            self.xu[:, 1:] = 5.12

        else:
            print("Unknown option for CTP single.") 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:22,代碼來源:ctp.py

示例2: test_multigrad

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import cos [as 別名]
def test_multigrad():
    def complicated_fun(a,b,c,d,e,f=1.1, g=9.0):
        return a + np.sin(b) + np.cosh(c) + np.cos(d) + np.tan(e) + f + g

    def complicated_fun_3_1(d_b):
        d, b = d_b
        return complicated_fun(A, b, C, d, E, f=F, g=G)

    A = 0.5
    B = -0.3
    C = 0.2
    D = -1.1
    E = 0.7
    F = 0.6
    G = -0.1

    wrapped = grad(complicated_fun, argnum=[3, 1])(A, B, C, D, E, f=F, g=G)
    explicit = grad(complicated_fun_3_1)((D, B))
    check_equivalent(wrapped, explicit) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:21,代碼來源:test_wrappers.py

示例3: test_value_and_multigrad

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import cos [as 別名]
def test_value_and_multigrad():
    def complicated_fun(a,b,c,d,e,f=1.1, g=9.0):
        return a + np.sin(b) + np.cosh(c) + np.cos(d) + np.tan(e) + f + g

    A = 0.5
    B = -0.3
    C = 0.2
    D = -1.1
    E = 0.7
    F = 0.6
    G = -0.1

    dfun = grad(complicated_fun, argnum=[3, 1])
    dfun_both = value_and_grad(complicated_fun, argnum=[3, 1])

    check_equivalent(complicated_fun(A, B, C, D, E, f=F, g=G),
                     dfun_both(A, B, C, D, E, f=F, g=G)[0])

    check_equivalent(dfun(A, B, C, D, E, f=F, g=G),
                     dfun_both(A, B, C, D, E, f=F, g=G)[1]) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:22,代碼來源:test_wrappers.py

示例4: compute_f

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import cos [as 別名]
def compute_f(theta, lambda0, dL, shape):
    """ Compute the 'vacuum' field vector """

    # get plane wave k vector components (in units of grid cells)
    k0 = 2 * npa.pi / lambda0 * dL
    kx =  k0 * npa.sin(theta)
    ky = -k0 * npa.cos(theta)  # negative because downwards

    # array to write into
    f_src = npa.zeros(shape, dtype=npa.complex128)

    # get coordinates
    Nx, Ny = shape
    xpoints = npa.arange(Nx)
    ypoints = npa.arange(Ny)
    xv, yv = npa.meshgrid(xpoints, ypoints, indexing='ij')

    # compute values and insert into array
    x_PW = npa.exp(1j * xpoints * kx)[:, None]
    y_PW = npa.exp(1j * ypoints * ky)[:, None]

    f_src[xv, yv] = npa.outer(x_PW, y_PW)

    return f_src.flatten() 
開發者ID:fancompute,項目名稱:ceviche,代碼行數:26,代碼來源:sources.py

示例5: __init__

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import cos [as 別名]
def __init__(self, n_var=2, n_constr=1, option="linear"):
        super().__init__(n_var=n_var, n_obj=2, n_constr=n_constr, xl=0, xu=1, type_var=anp.double)

        def g_linear(x):
            return 1 + anp.sum(x, axis=1)

        def g_multimodal(x):
            A = 10
            return 1 + A * x.shape[1] + anp.sum(x ** 2 - A * anp.cos(2 * anp.pi * x), axis=1)

        if option == "linear":
            self.calc_g = g_linear

        elif option == "multimodal":
            self.calc_g = g_multimodal
            self.xl[:, 1:] = -5.12
            self.xu[:, 1:] = 5.12

        else:
            print("Unknown option for CTP problems.") 
開發者ID:msu-coinlab,項目名稱:pymop,代碼行數:22,代碼來源:ctp.py

示例6: g1

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import cos [as 別名]
def g1(self, X_M):
        return 100 * (self.k + anp.sum(anp.square(X_M - 0.5) - anp.cos(20 * anp.pi * (X_M - 0.5)), axis=1)) 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:4,代碼來源:dtlz.py

示例7: obj_func

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import cos [as 別名]
def obj_func(self, X_, g, alpha=1):
        f = []

        for i in range(0, self.n_obj):
            _f = (1 + g)
            _f *= anp.prod(anp.cos(anp.power(X_[:, :X_.shape[1] - i], alpha) * anp.pi / 2.0), axis=1)
            if i > 0:
                _f *= anp.sin(anp.power(X_[:, X_.shape[1] - i], alpha) * anp.pi / 2.0)

            f.append(_f)

        f = anp.column_stack(f)
        return f 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:15,代碼來源:dtlz.py

示例8: _evaluate

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import cos [as 別名]
def _evaluate(self, x, out, *args, **kwargs):
        z = anp.power(x, 2) - self.A * anp.cos(2 * anp.pi * x)
        out["F"] = self.A * self.n_var + anp.sum(z, axis=1) 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:5,代碼來源:rastrigin.py

示例9: calc_constraint

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import cos [as 別名]
def calc_constraint(self, theta, a, b, c, d, e, f1, f2):
        return - (anp.cos(theta) * (f2 - e) - anp.sin(theta) * f1 -
                  a * anp.abs(anp.sin(b * anp.pi * (anp.sin(theta) * (f2 - e) + anp.cos(theta) * f1) ** c)) ** d) 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:5,代碼來源:ctp.py

示例10: _evaluate

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import cos [as 別名]
def _evaluate(self, x, out, *args, **kwargs):
        f1 = x[:, 0]
        g = 1.0
        g += 10 * (self.n_var - 1)
        for i in range(1, self.n_var):
            g += x[:, i] * x[:, i] - 10.0 * anp.cos(4.0 * anp.pi * x[:, i])
        h = 1.0 - anp.sqrt(f1 / g)
        f2 = g * h

        out["F"] = anp.column_stack([f1, f2]) 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:12,代碼來源:zdt.py

示例11: _evaluate

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import cos [as 別名]
def _evaluate(self, x, out, *args, **kwargs):
        # define an objective function to be evaluated using var1
        f = anp.sum(anp.power(x, 2) - self.const_1 * anp.cos(2 * anp.pi * x), axis=1)

        # !!! only if a constraint value is positive it is violated !!!
        # set the constraint that x1 + x2 > var2
        g1 = (x[:, 0] + x[:, 1]) - self.const_2

        # set the constraint that x3 + x4 < var2
        g2 = self.const_2 - (x[:, 2] + x[:, 3])

        out["F"] = f
        out["G"] = anp.column_stack([g1, g2]) 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:15,代碼來源:define_custom_problem.py

示例12: _state_eq

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import cos [as 別名]
def _state_eq(self, st, u):
        x, x_dot, theta, theta_dot = st
        force = u[0]
        costheta = np.cos(theta)
        sintheta = np.sin(theta)
        temp = (force + self.polemass_length * theta_dot * theta_dot * sintheta) / self.total_mass
        thetaacc = (self.gravity * sintheta - costheta* temp) / (self.length * (4.0/3.0 - self.masspole * costheta * costheta / self.total_mass))
        xacc  = temp - self.polemass_length * thetaacc * costheta / self.total_mass
        x  = x + self.tau * x_dot
        x_dot = x_dot + self.tau * xacc
        theta = theta + self.tau * theta_dot
        theta_dot = theta_dot + self.tau * thetaacc
        return np.array([x, x_dot, theta, theta_dot]) 
開發者ID:neka-nat,項目名稱:ddp-gym,代碼行數:15,代碼來源:cartpole_continuous.py

示例13: xyz_te

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import cos [as 別名]
def xyz_te(self):
        xyz_te = self.xyz_le + self.chord * np.array(
            [np.cos(np.radians(self.twist)),
             0,
             -np.sin(np.radians(self.twist))
             ])

        return xyz_te 
開發者ID:peterdsharpe,項目名稱:AeroSandbox,代碼行數:10,代碼來源:geometry.py

示例14: add_control_surface

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import cos [as 別名]
def add_control_surface(self, deflection=0., hinge_point=0.75):
        # Returns a version of the airfoil with a control surface added at a given point.
        # Inputs:
        #   # deflection: the deflection angle, in degrees. Downwards-positive.
        #   # hinge_point: the location of the hinge, as a fraction of chord.

        # Make the rotation matrix for the given angle.
        sintheta = np.sin(np.radians(-deflection))
        costheta = np.cos(np.radians(-deflection))
        rotation_matrix = np.array(
            [[costheta, -sintheta],
             [sintheta, costheta]]
        )

        # Find the hinge point
        hinge_point = np.array(
            (hinge_point, self.get_camber_at_chord_fraction(hinge_point)))  # Make hinge_point a vector.

        # Split the airfoil into the sections before and after the hinge
        split_index = np.where(self.mcl_coordinates[:, 0] > hinge_point[0])[0][0]
        mcl_coordinates_before = self.mcl_coordinates[:split_index, :]
        mcl_coordinates_after = self.mcl_coordinates[split_index:, :]
        upper_minus_mcl_before = self.upper_minus_mcl[:split_index, :]
        upper_minus_mcl_after = self.upper_minus_mcl[split_index:, :]

        # Rotate the mean camber line (MCL) and "upper minus mcl"
        new_mcl_coordinates_after = np.transpose(
            rotation_matrix @ np.transpose(mcl_coordinates_after - hinge_point)) + hinge_point
        new_upper_minus_mcl_after = np.transpose(rotation_matrix @ np.transpose(upper_minus_mcl_after))

        # Do blending

        # Assemble airfoil
        new_mcl_coordinates = np.vstack((mcl_coordinates_before, new_mcl_coordinates_after))
        new_upper_minus_mcl = np.vstack((upper_minus_mcl_before, new_upper_minus_mcl_after))
        upper_coordinates = np.flipud(new_mcl_coordinates + new_upper_minus_mcl)
        lower_coordinates = new_mcl_coordinates - new_upper_minus_mcl
        coordinates = np.vstack((upper_coordinates, lower_coordinates[1:, :]))

        new_airfoil = Airfoil(name=self.name + " flapped", coordinates=coordinates, repanel=False)
        return new_airfoil  # TODO fix self-intersecting airfoils at high deflections 
開發者ID:peterdsharpe,項目名稱:AeroSandbox,代碼行數:43,代碼來源:geometry.py

示例15: cosspace

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import cos [as 別名]
def cosspace(min=0, max=1, n_points=50):
    mean = (max + min) / 2
    amp = (max - min) / 2

    return mean + amp * np.cos(np.linspace(np.pi, 0, n_points)) 
開發者ID:peterdsharpe,項目名稱:AeroSandbox,代碼行數:7,代碼來源:geometry.py


注:本文中的autograd.numpy.cos方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。