本文整理匯總了Python中autograd.numpy.copy方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.copy方法的具體用法?Python numpy.copy怎麽用?Python numpy.copy使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類autograd.numpy
的用法示例。
在下文中一共展示了numpy.copy方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: gbrbm_perturb
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import copy [as 別名]
def gbrbm_perturb(var_perturb_B, dx=50, dh=10):
"""
Get a Gaussian-Bernoulli RBM problem where the first entry of the B matrix
(the matrix linking the latent and the observation) is perturbed.
- var_perturb_B: Gaussian noise variance for perturbing B.
- dx: observed dimension
- dh: latent dimension
Return p (density), data source
"""
with util.NumpySeedContext(seed=10):
B = np.random.randint(0, 2, (dx, dh))*2 - 1.0
b = np.random.randn(dx)
c = np.random.randn(dh)
p = density.GaussBernRBM(B, b, c)
B_perturb = np.copy(B)
if var_perturb_B > 1e-7:
B_perturb[0, 0] = B_perturb[0, 0] + \
np.random.randn(1)*np.sqrt(var_perturb_B)
ds = data.DSGaussBernRBM(B_perturb, b, c, burnin=2000)
return p, ds
示例2: _set_precision
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import copy [as 別名]
def _set_precision(self, precision_val):
# new val needs to have dimension (n_unique, n_features, n_features)
# internally, n_components x 1
precision_new = \
np.zeros((self.n_components, self.n_features, self.n_features))
if precision_val is not None:
precision_val = \
precision_val.reshape(self.n_unique, self.n_features, self.n_features)
if precision_val.shape == \
(self.n_unique, self.n_features, self.n_features):
for u in range(self.n_unique):
for t in range(self.n_chain):
precision_new[u*(self.n_chain)+t] = precision_val[u].copy()
else:
raise ValueError("cannot match shape of precision")
self._precision_ = precision_new
示例3: _set_startprob
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import copy [as 別名]
def _set_startprob(self, startprob):
if startprob is None:
startprob = np.tile(1.0 / self.n_components, self.n_components)
else:
startprob = np.asarray(startprob, dtype=np.float)
normalize(startprob)
if len(startprob) != self.n_components:
if len(startprob) == self.n_unique:
startprob_split = np.copy(startprob) / (1.0+self.n_tied)
startprob = np.zeros(self.n_components)
for u in range(self.n_unique):
for t in range(self.n_chain):
startprob[u*(self.n_chain)+t] = \
startprob_split[u].copy()
else:
raise ValueError("cannot match shape of startprob")
if not np.allclose(np.sum(startprob), 1.0):
raise ValueError('startprob must sum to 1.0')
self._log_startprob = np.log(np.asarray(startprob).copy())
示例4: _set_startprob_prior
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import copy [as 別名]
def _set_startprob_prior(self, startprob_prior):
if startprob_prior is None or startprob_prior == 1.0:
startprob_prior = np.zeros(self.n_components)
else:
startprob_prior = np.asarray(startprob_prior, dtype=np.float)
if len(startprob_prior) != self.n_components:
if len(startprob_prior) == self.n_unique:
startprob_prior_split = np.copy(startprob_prior) / \
(1.0 + self.n_tied)
startprob_prior = np.zeros(self.n_components)
for u in range(self.n_unique):
for t in range(self.n_chain):
startprob_prior[u*(self.n_chain)+t] = \
startprob_prior_split[u].copy()
else:
raise ValueError("cannot match shape of startprob")
self.startprob_prior = np.asarray(startprob_prior).copy()
示例5: _set_transmat
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import copy [as 別名]
def _set_transmat(self, transmat_val):
if transmat_val is None:
transmat = np.tile(1.0 / self.n_components,
(self.n_components, self.n_components))
else:
transmat_val[np.isnan(transmat_val)] = 0.0
normalize(transmat_val, axis=1)
if (np.asarray(transmat_val).shape == (self.n_components,
self.n_components)):
transmat = np.copy(transmat_val)
elif transmat_val.shape[0] == self.n_unique:
transmat = self._ntied_transmat(transmat_val)
else:
raise ValueError("cannot match shape of transmat")
if not np.all(np.allclose(np.sum(transmat, axis=1), 1.0)):
raise ValueError('Rows of transmat must sum to 1.0')
self._log_transmat = np.log(np.asarray(transmat).copy())
underflow_idx = np.isnan(self._log_transmat)
self._log_transmat[underflow_idx] = NEGINF
示例6: _set_transmat_prior
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import copy [as 別名]
def _set_transmat_prior(self, transmat_prior_val):
# new val needs be n_unique x n_unique
# internally, n_components x n_components
# _ntied_transmat_prior is
# called to get n_components x n_components
transmat_prior_new = np.zeros((self.n_components, self.n_components))
if transmat_prior_val is not None:
if transmat_prior_val.shape == (self.n_unique, self.n_unique):
transmat_prior_new = \
np.copy(self._ntied_transmat_prior(transmat_prior_val))
else:
raise ValueError("cannot match shape of transmat_prior")
self.transmat_prior = transmat_prior_new
示例7: clone
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import copy [as 別名]
def clone(self):
"""
Return a new Data object with a separate copy of each internal
variable, and with the same content.
"""
nX = np.copy(self.X)
return Data(nX)
示例8: __add__
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import copy [as 別名]
def __add__(self, data2):
"""
Merge the current Data with another one.
Create a new Data and create a new copy for all internal variables.
"""
copy = self.clone()
copy2 = data2.clone()
nX = np.vstack((copy.X, copy2.X))
return Data(nX)
### end Data class
示例9: __uniform_reference_directions
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import copy [as 別名]
def __uniform_reference_directions(self, ref_dirs, ref_dir, n_partitions, beta, depth):
if depth == len(ref_dir) - 1:
ref_dir[depth] = beta / (1.0 * n_partitions)
ref_dirs.append(ref_dir[None, :])
else:
for i in range(beta + 1):
ref_dir[depth] = 1.0 * i / (1.0 * n_partitions)
self.__uniform_reference_directions(ref_dirs, anp.copy(ref_dir), n_partitions, beta - i,
depth + 1)
示例10: _calc_pareto_front
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import copy [as 別名]
def _calc_pareto_front(self, n_pareto_points=100):
x1 = anp.linspace(0, 5, n_pareto_points)
x2 = anp.copy(x1)
x2[x1 >= 3] = 3
return anp.vstack((4 * anp.square(x1) + 4 * anp.square(x2), anp.square(x1 - 5) + anp.square(x2 - 5))).T
示例11: _set_mu
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import copy [as 別名]
def _set_mu(self, mu_val):
# new val needs to be of shape (n_uniqe, n_features)
# internally, (n_components x n_features)
mu_new = np.zeros((self.n_components, self.n_features))
if mu_val is not None:
mu_val = mu_val.reshape(self.n_unique, self.n_features)
if mu_val.shape == (self.n_unique, self.n_features):
for u in range(self.n_unique):
for t in range(self.n_chain):
mu_new[u*(self.n_chain)+t] = mu_val[u].copy()
else:
raise ValueError("cannot match shape of mu")
self._mu_ = mu_new
示例12: _set_mu_prior
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import copy [as 別名]
def _set_mu_prior(self, mu_prior):
if mu_prior is None:
self._mu_prior_ = np.zeros((self.n_components, self.n_features))
else:
mu_prior = np.asarray(mu_prior)
mu_prior = mu_prior.reshape(self.n_unique, self.n_features)
if mu_prior.shape == (self.n_unique, self.n_features):
for u in range(self.n_unique):
for t in range(self.n_chain):
self._mu_prior[u*(self.n_chain)+t] = mu_prior[u].copy()
else:
raise ValueError("cannot match shape of mu_prior")
示例13: _obj_grad
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import copy [as 別名]
def _obj_grad(self, wrt, m, p, a, xn, xln, gn, entries='all', **kwargs):
m = m.reshape(self.n_unique, self.n_features, 1) # tm
if wrt == 'm':
wrt_num = 0
elif wrt == 'p':
wrt_num = 1
elif wrt == 'a':
wrt_num = 2
else:
raise ValueError('unknown parameter')
res = grad(self._obj, wrt_num)(m, p, a, xn, xln, gn)
if wrt == 'p' and self.n_features > 1:
if entries == 'diag':
res_new = \
np.zeros((self.n_unique, self.n_features, self.n_features))
for u in range(self.n_unique):
for f in range(self.n_features):
res_new[u,f,f] = res[u,f,f]
res = np.copy(res_new)
elif entries == 'offdiag':
for u in range(self.n_unique):
for f in range(self.n_features):
res[u,f,f] = 0.
res = np.array([res])
return res
示例14: _set_alpha
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import copy [as 別名]
def _set_alpha(self, alpha_val):
# new val needs to have a 1st dim of length n_unique x n_lags
# if shared_alpha is true, a shape of 1 x n_lags is possible, too
# internally, n_components x n_lags
alpha_new = np.zeros((self.n_components, self.n_lags))
if alpha_val is not None:
if alpha_val.ndim == 1:
alpha_val = alpha_val.reshape(-1, 1) # make sure 2nd dim exists
if alpha_val.shape[1] != self.n_lags:
raise ValueError("shape[1] does not match n_lags")
if self.shared_alpha == False:
# alpha is not shared
if alpha_val.shape[0] != self.n_unique:
raise ValueError("shape[0] does not match n_unique")
for u in range(self.n_unique):
for t in range(1+self.n_tied):
alpha_new[u*(1+self.n_tied)+t, :] = alpha_val[u, :].copy()
else:
# alpha is shared ...
if alpha_val.shape[0] != self.n_unique and \
alpha_val.shape[0] != 1:
# ... the shape should either be 1 x L or U x L
raise ValueError("shape[0] is neither 1 nor does it match n_unique")
if alpha_val.shape[0] == self.n_unique and \
not (alpha_val == alpha_val[0,:]).all():
# .. in case of U x L the rows need to be identical
raise ValueError("rows not identical (shared_alpha)")
for u in range(self.n_unique):
for t in range(1+self.n_tied):
alpha_new[u*(1+self.n_tied)+t, :] = alpha_val[0, :].copy()
self._alpha_ = alpha_new
示例15: match
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import copy [as 別名]
def match(self, model_frame, diff_kernels=None, convolution="fft"):
"""Match the frame of `Blend` to the frame of this observation.
The method sets up the mappings in spectral and spatial coordinates,
which includes a spatial selection, computing PSF difference kernels
and filter transformations.
Parameters
---------
model_frame: a `scarlet.Frame` instance
The frame of `Blend` to match
diff_kernels: array
The difference kernel for each band.
If `diff_kernels` is `None` then they are
calculated automatically.
convolution: str
The type of convolution to use.
- `real`: Use a real space convolution and gradient
- `fft`: Use a DFT to do the convolution and gradient
Returns
-------
None
"""
self.model_frame = model_frame
if model_frame.channels is not None and self.frame.channels is not None:
channel_origin = list(model_frame.channels).index(self.frame.channels[0])
self.frame.origin = (channel_origin, *self.frame.origin[1:])
slices = overlapped_slices(self.frame, model_frame)
self.slices_for_images = slices[0] # Slice of images to match the model
self.slices_for_model = slices[1] # Slice of model that overlaps with the observation
# check dtype consistency
if self.frame.dtype != model_frame.dtype:
self.frame.dtype = model_frame.dtype
self.images = self.images.copy().astype(model_frame.dtype)
if type(self.weights) is np.ndarray:
self.weights = self.weights.copy().astype(model_frame.dtype)
# constrcut diff kernels
if diff_kernels is None:
self._diff_kernels = None
if self.frame.psf is not model_frame.psf:
assert self.frame.psf is not None and model_frame.psf is not None
psf = fft.Fourier(self.frame.psf.update_dtype(model_frame.dtype).image)
model_psf = fft.Fourier(
model_frame.psf.update_dtype(model_frame.dtype).image
)
self._diff_kernels = fft.match_psfs(psf, model_psf)
else:
if not isinstance(diff_kernels, fft.Fourier):
diff_kernels = fft.Fourier(diff_kernels)
self._diff_kernels = diff_kernels
# initialize the filter window
assert convolution in ["real", "fft"], "`convolution` must be either 'real' or 'fft'"
self.convolution = convolution
return self