本文整理匯總了Python中autograd.numpy.concatenate方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.concatenate方法的具體用法?Python numpy.concatenate怎麽用?Python numpy.concatenate使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類autograd.numpy
的用法示例。
在下文中一共展示了numpy.concatenate方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _calc_pareto_front
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import concatenate [as 別名]
def _calc_pareto_front(self, n_points=100, flatten=True):
regions = [[0, 0.0830015349],
[0.182228780, 0.2577623634],
[0.4093136748, 0.4538821041],
[0.6183967944, 0.6525117038],
[0.8233317983, 0.8518328654]]
pf = []
for r in regions:
x1 = anp.linspace(r[0], r[1], int(n_points / len(regions)))
x2 = 1 - anp.sqrt(x1) - x1 * anp.sin(10 * anp.pi * x1)
pf.append(anp.array([x1, x2]).T)
if not flatten:
pf = anp.concatenate([pf[None,...] for pf in pf])
else:
pf = anp.row_stack(pf)
return pf
示例2: sfs
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import concatenate [as 別名]
def sfs(self, n):
if n == 0:
return np.array([0.])
Et_jj = self.etjj(n)
#assert np.all(Et_jj[:-1] - Et_jj[1:] >= 0.0) and np.all(Et_jj >= 0.0) and np.all(Et_jj <= self.tau)
ret = np.sum(Et_jj[:, None] * Wmatrix(n), axis=0)
before_tmrca = self.tau - np.sum(ret * np.arange(1, n) / n)
# ignore branch length above untruncated TMRCA
if self.tau == float('inf'):
before_tmrca = 0.0
ret = np.concatenate((np.array([0.0]), ret, np.array([before_tmrca])))
return ret
# def transition_prob(self, v, axis=0):
# return moran_model.moran_action(self.scaled_time, v, axis=axis)
示例3: get_ith_minibatch_ixs_fences
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import concatenate [as 別名]
def get_ith_minibatch_ixs_fences(b_i, batch_size, fences):
"""Split timeseries data of uneven sequence lengths into batches.
This is how we handle different sized sequences.
@param b_i: integer
iteration index
@param batch_size: integer
size of batch
@param fences: list of integers
sequence of cutoff array
@return idx: integer
@return batch_slice: slice object
"""
num_data = len(fences) - 1
num_minibatches = num_data / batch_size + ((num_data % batch_size) > 0)
b_i = b_i % num_minibatches
idx = slice(b_i * batch_size, (b_i+1) * batch_size)
batch_i = np.arange(num_data)[idx]
batch_slice = np.concatenate([range(i, j) for i, j in
zip(fences[batch_i], fences[batch_i+1])])
return idx, batch_slice
示例4: optimize_and_lls
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import concatenate [as 別名]
def optimize_and_lls(optfun):
num_iters = 200
elbos = []
def callback(params, t, g):
elbo_val = -objective(params, t)
elbos.append(elbo_val)
if t % 50 == 0:
print("Iteration {} lower bound {}".format(t, elbo_val))
init_mean = -1 * np.ones(D)
init_log_std = -5 * np.ones(D)
init_var_params = np.concatenate([init_mean, init_log_std])
variational_params = optfun(num_iters, init_var_params, callback)
return np.array(elbos)
# let's optimize this with a few different step sizes
示例5: callback
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import concatenate [as 別名]
def callback(X, y, predict_func, acquisition_function, next_point, new_value):
plt.cla()
# Show posterior marginals.
plot_xs = np.reshape(np.linspace(domain_min, domain_max, 300), (300,1))
pred_mean, pred_std = predict_func(plot_xs)
ax.plot(plot_xs, pred_mean, 'b')
ax.fill(np.concatenate([plot_xs, plot_xs[::-1]]),
np.concatenate([pred_mean - 1.96 * pred_std,
(pred_mean + 1.96 * pred_std)[::-1]]),
alpha=.15, fc='Blue', ec='None')
ax.plot(X, y, 'kx')
ax.plot(next_point, new_value, 'ro')
alphas = acquisition_function(plot_xs)
ax.plot(plot_xs, alphas, 'r')
ax.set_ylim([-1.5, 1.5])
ax.set_xticks([])
ax.set_yticks([])
plt.draw()
plt.pause(1)
示例6: plot_gp
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import concatenate [as 別名]
def plot_gp(ax, X, y, pred_mean, pred_cov, plot_xs):
ax.cla()
marg_std = np.sqrt(np.diag(pred_cov))
ax.plot(plot_xs, pred_mean, 'b')
ax.fill(np.concatenate([plot_xs, plot_xs[::-1]]),
np.concatenate([pred_mean - 1.96 * marg_std,
(pred_mean + 1.96 * marg_std)[::-1]]),
alpha=.15, fc='Blue', ec='None')
# Show samples from posterior.
rs = npr.RandomState(0)
sampled_funcs = rs.multivariate_normal(pred_mean, pred_cov, size=10)
ax.plot(plot_xs, sampled_funcs.T)
ax.plot(X, y, 'kx')
ax.set_ylim([-1.5, 1.5])
ax.set_xticks([])
ax.set_yticks([])
示例7: test_cast_to_int
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import concatenate [as 別名]
def test_cast_to_int():
inds = np.ones(5)[:,None]
def fun(W):
# glue W and inds together
glued_together = np.concatenate((W, inds), axis=1)
# separate W and inds back out
new_W = W[:,:-1]
new_inds = np.int64(W[:,-1])
assert new_inds.dtype == np.int64
return new_W[new_inds].sum()
W = np.random.randn(5, 10)
check_grads(fun)(W)
示例8: initialize_NN
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import concatenate [as 別名]
def initialize_NN(self, Q):
hyp = np.array([])
layers = Q.shape[0]
for layer in range(0,layers-2):
A = -np.sqrt(6.0/(Q[layer]+Q[layer+1])) + 2.0*np.sqrt(6.0/(Q[layer]+Q[layer+1]))*np.random.rand(Q[layer],Q[layer+1])
b = np.zeros((1,Q[layer+1]))
hyp = np.concatenate([hyp, A.ravel(), b.ravel()])
A = -np.sqrt(6.0/(Q[-2]+Q[-1])) + 2.0*np.sqrt(6.0/(Q[-2]+Q[-1]))*np.random.rand(Q[-2],Q[-1])
b = np.zeros((1,Q[-1]))
hyp = np.concatenate([hyp, A.ravel(), b.ravel()])
A = -np.sqrt(6.0/(Q[-2]+Q[-1])) + 2.0*np.sqrt(6.0/(Q[-2]+Q[-1]))*np.random.rand(Q[-2],Q[-1])
b = np.zeros((1,Q[-1]))
hyp = np.concatenate([hyp, A.ravel(), b.ravel()])
return hyp
示例9: __init__
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import concatenate [as 別名]
def __init__(self, X, y, M=10, max_iter = 2000, N_batch = 1,
monitor_likelihood = 10, lrate = 1e-3):
(N,D) = X.shape
N_subset = min(N, 10000)
idx = np.random.choice(N, N_subset, replace=False)
kmeans = KMeans(n_clusters=M, random_state=0).fit(X[idx,:])
Z = kmeans.cluster_centers_
hyp = np.log(np.ones(D+1))
logsigma_n = np.array([-4.0])
hyp = np.concatenate([hyp, logsigma_n])
m = np.zeros((M,1))
S = kernel(Z,Z,hyp[:-1])
self.X = X
self.y = y
self.M = M
self.Z = Z
self.m = m
self.S = S
self.hyp= hyp
self.max_iter = max_iter
self.N_batch = N_batch
self.monitor_likelihood = monitor_likelihood
self.jitter = 1e-8
self.jitter_cov = 1e-8
# Adam optimizer parameters
self.mt_hyp = np.zeros(hyp.shape)
self.vt_hyp = np.zeros(hyp.shape)
self.lrate = lrate
示例10: transformed_expi
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import concatenate [as 別名]
def transformed_expi(x):
abs_x = np.abs(x)
ser = abs_x < 1. / 45.
nser = np.logical_not(ser)
# ret = np.zeros(x.shape)
# ret[ser], ret[nser] = transformed_expi_series(x[ser]), transformed_expi_naive(x[nser])))
# return ret
# We use np.concatenate to combine.
# would be better to use ret[ser] and ret[nser] as commented out above
# but array assignment not yet supported by autograd
assert np.all(abs_x[:-1] >= abs_x[1:])
return np.concatenate((transformed_expi_naive(x[nser]), transformed_expi_series(x[ser])))
示例11: expm1d
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import concatenate [as 別名]
def expm1d(x, eps=1e-6):
x = np.array(x)
abs_x = np.abs(x)
if x.shape:
# FIXME: don't require abs_x to be increasing
assert np.all(abs_x[1:] >= abs_x[:-1])
small = abs_x < eps
big = ~small
return np.concatenate([expm1d_taylor(x[small]),
expm1d_naive(x[big])])
elif abs_x < eps:
return expm1d_taylor(x)
else:
return expm1d_naive(x)
示例12: taylor_approx
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import concatenate [as 別名]
def taylor_approx(target, stencil, values):
"""Use taylor series to approximate up to second order derivatives.
Args:
target: An array of shape (..., n), a batch of n-dimensional points
where one wants to approximate function value and derivatives.
stencil: An array of shape broadcastable to (..., k, n), for each target
point a set of k = triangle(n + 1) points to use on its approximation.
values: An array of shape broadcastable to (..., k), the function value at
each of the stencil points.
Returns:
An array of shape (..., k), for each target point the approximated
function value, gradient and hessian evaluated at that point (flattened
and in the same order as returned by derivative_names).
"""
# Broadcast arrays to their required shape.
batch_shape, ndim = target.shape[:-1], target.shape[-1]
stencil = np.broadcast_to(stencil, batch_shape + (triangular(ndim + 1), ndim))
values = np.broadcast_to(values, stencil.shape[:-1])
# Subtract target from each stencil point.
delta_x = stencil - np.expand_dims(target, axis=-2)
delta_xy = np.matmul(
np.expand_dims(delta_x, axis=-1), np.expand_dims(delta_x, axis=-2))
i = np.arange(ndim)
j, k = np.triu_indices(ndim, k=1)
# Build coefficients for the Taylor series equations, namely:
# f(stencil) = coeffs @ [f(target), df/d0(target), ...]
coeffs = np.concatenate([
np.ones(delta_x.shape[:-1] + (1,)), # f(target)
delta_x, # df/di(target)
delta_xy[..., i, i] / 2, # d^2f/di^2(target)
delta_xy[..., j, k], # d^2f/{dj dk}(target)
], axis=-1)
# Then: [f(target), df/d0(target), ...] = coeffs^{-1} @ f(stencil)
return np.squeeze(
np.matmul(np.linalg.inv(coeffs), values[..., np.newaxis]), axis=-1)
示例13: fisher_diag
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import concatenate [as 別名]
def fisher_diag(lam):
mu, log_sigma = unpack_params(lam)
return np.concatenate([np.exp(-2.*log_sigma),
np.ones(len(log_sigma))*2])
# simple! basically free!
示例14: build_toy_dataset
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import concatenate [as 別名]
def build_toy_dataset(D=1, n_data=20, noise_std=0.1):
rs = npr.RandomState(0)
inputs = np.concatenate([np.linspace(0, 3, num=n_data/2),
np.linspace(6, 8, num=n_data/2)])
targets = (np.cos(inputs) + rs.randn(n_data) * noise_std) / 2.0
inputs = (inputs - 4.0) / 2.0
inputs = inputs.reshape((len(inputs), D))
return inputs, targets
示例15: callback
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import concatenate [as 別名]
def callback(params):
print("Log likelihood {}".format(-objective(params)))
plt.cla()
# Show posterior marginals.
plot_xs = np.reshape(np.linspace(-7, 7, 300), (300,1))
pred_mean, pred_cov = predict(params, X, y, plot_xs)
marg_std = np.sqrt(np.diag(pred_cov))
ax.plot(plot_xs, pred_mean, 'b')
ax.fill(np.concatenate([plot_xs, plot_xs[::-1]]),
np.concatenate([pred_mean - 1.96 * marg_std,
(pred_mean + 1.96 * marg_std)[::-1]]),
alpha=.15, fc='Blue', ec='None')
# Show samples from posterior.
rs = npr.RandomState(0)
sampled_funcs = rs.multivariate_normal(pred_mean, pred_cov, size=10)
ax.plot(plot_xs, sampled_funcs.T)
ax.plot(X, y, 'kx')
ax.set_ylim([-1.5, 1.5])
ax.set_xticks([])
ax.set_yticks([])
plt.draw()
plt.pause(1.0/60.0)
# Initialize covariance parameters