當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.asarray方法代碼示例

本文整理匯總了Python中autograd.numpy.asarray方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.asarray方法的具體用法?Python numpy.asarray怎麽用?Python numpy.asarray使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在autograd.numpy的用法示例。


在下文中一共展示了numpy.asarray方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: resample

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import asarray [as 別名]
def resample(self):
        """Create a new SFS by resampling blocks with replacement.

        Note the resampled SFS is assumed to have the same length in base pairs \
        as the original SFS, which may be a poor assumption if the blocks are not of equal length.

        :returns: Resampled SFS
        :rtype: :class:`Sfs`
        """
        loci = np.random.choice(
            np.arange(self.n_loci), size=self.n_loci, replace=True)
        mat = self.freqs_matrix[:, loci]
        to_keep = np.asarray(mat.sum(axis=1) > 0).squeeze()
        to_keep = np.arange(len(self.configs))[to_keep]
        mat = mat[to_keep, :]
        configs = _ConfigList_Subset(self.configs, to_keep)

        return self.from_matrix(mat, configs, self.folded, self.length) 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:20,代碼來源:sfs.py

示例2: __init__

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import asarray [as 別名]
def __init__(self, sigma2s, wts=None):
        """
        Mixture of isotropic Gaussian kernels:
          sum wts[i] * exp(- ||x - y||^2 / (2 * sigma2s[i]))

        sigma2s: a list/array of squared bandwidths
        wts: a list/array of weights. Defaults to equal weights summing to 1.
        """
        self.sigma2s = sigma2s = np.asarray(sigma2s)
        assert len(sigma2s) > 0

        if wts is None:
            self.wts = wts = np.full(len(sigma2s), 1/len(sigma2s))
        else:
            self.wts = wts = np.asarray(wts)
            assert len(wts) == len(sigma2s)
            assert all(w >= 0 for w in wts) 
開發者ID:wittawatj,項目名稱:kernel-gof,代碼行數:19,代碼來源:kernel.py

示例3: _set_precision_prior

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import asarray [as 別名]
def _set_precision_prior(self, precision_prior):
        if precision_prior is None:
            self._precision_prior_ = \
            np.zeros((self.n_components, self.n_features, self.n_features))
        else:
            precision_prior = np.asarray(precision_prior)
            if len(precision_prior) == 1:
                self._precision_prior_ = np.tile(precision_prior,
                (self.n_components, self.n_features, self.n_features))
            elif \
            (precision_prior.reshape(self.n_unique, self.n_features, self.n_features)).shape \
            == (self.n_unique, self.n_features, self.n_features):
                self._precision_prior_ = \
                np.zeros((self.n_components, self.n_features, self.n_features))
                for u in range(self.n_unique):
                    for t in range(self.n_chain):
                        self._precision_prior_[u*(self.n_chain)+t] = precision_prior[u].copy()
            else:
                raise ValueError("cannot match shape of precision_prior") 
開發者ID:mackelab,項目名稱:autohmm,代碼行數:21,代碼來源:tm.py

示例4: _set_startprob

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import asarray [as 別名]
def _set_startprob(self, startprob):
        if startprob is None:
            startprob = np.tile(1.0 / self.n_components, self.n_components)
        else:
            startprob = np.asarray(startprob, dtype=np.float)

            normalize(startprob)

            if len(startprob) != self.n_components:
                if len(startprob) == self.n_unique:
                    startprob_split = np.copy(startprob) / (1.0+self.n_tied)
                    startprob = np.zeros(self.n_components)
                    for u in range(self.n_unique):
                        for t in range(self.n_chain):
                            startprob[u*(self.n_chain)+t] = \
                                startprob_split[u].copy()
                else:
                    raise ValueError("cannot match shape of startprob")

        if not np.allclose(np.sum(startprob), 1.0):
            raise ValueError('startprob must sum to 1.0')

        self._log_startprob = np.log(np.asarray(startprob).copy()) 
開發者ID:mackelab,項目名稱:autohmm,代碼行數:25,代碼來源:tm.py

示例5: _set_transmat

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import asarray [as 別名]
def _set_transmat(self, transmat_val):
        if transmat_val is None:
            transmat = np.tile(1.0 / self.n_components,
                               (self.n_components, self.n_components))
        else:
            transmat_val[np.isnan(transmat_val)] = 0.0
            normalize(transmat_val, axis=1)

            if (np.asarray(transmat_val).shape == (self.n_components,
                                                   self.n_components)):
                transmat = np.copy(transmat_val)
            elif transmat_val.shape[0] == self.n_unique:
                transmat = self._ntied_transmat(transmat_val)
            else:
                raise ValueError("cannot match shape of transmat")

        if not np.all(np.allclose(np.sum(transmat, axis=1), 1.0)):
            raise ValueError('Rows of transmat must sum to 1.0')
        self._log_transmat = np.log(np.asarray(transmat).copy())
        underflow_idx = np.isnan(self._log_transmat)
        self._log_transmat[underflow_idx] = NEGINF 
開發者ID:mackelab,項目名稱:autohmm,代碼行數:23,代碼來源:tm.py

示例6: _centered

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import asarray [as 別名]
def _centered(arr, newshape):
    """Return the center newshape portion of the array.

    This function is used by `fft_convolve` to remove
    the zero padded region of the convolution.

    Note: If the array shape is odd and the target is even,
    the center of `arr` is shifted to the center-right
    pixel position.
    This is slightly different than the scipy implementation,
    which uses the center-left pixel for the array center.
    The reason for the difference is that we have
    adopted the convention of `np.fft.fftshift` in order
    to make sure that changing back and forth from
    fft standard order (0 frequency and position is
    in the bottom left) to 0 position in the center.
    """
    newshape = np.asarray(newshape)
    currshape = np.array(arr.shape)

    if not np.all(newshape <= currshape):
        msg = (
            "arr must be larger than newshape in both dimensions, received {0}, and {1}"
        )
        raise ValueError(msg.format(arr.shape, newshape))

    startind = (currshape - newshape + 1) // 2
    endind = startind + newshape
    myslice = [slice(startind[k], endind[k]) for k in range(len(endind))]

    return arr[tuple(myslice)] 
開發者ID:pmelchior,項目名稱:scarlet,代碼行數:33,代碼來源:fft.py

示例7: _pad

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import asarray [as 別名]
def _pad(arr, newshape, axes=None, mode="constant", constant_values=0):
    """Pad an array to fit into newshape

    Pad `arr` with zeros to fit into newshape,
    which uses the `np.fft.fftshift` convention of moving
    the center pixel of `arr` (if `arr.shape` is odd) to
    the center-right pixel in an even shaped `newshape`.
    """
    if axes is None:
        newshape = np.asarray(newshape)
        currshape = np.array(arr.shape)
        dS = newshape - currshape
        startind = (dS + 1) // 2
        endind = dS - startind
        pad_width = list(zip(startind, endind))
    else:
        # only pad the axes that will be transformed
        pad_width = [(0, 0) for axis in arr.shape]
        try:
            len(axes)
        except TypeError:
            axes = [axes]
        for a, axis in enumerate(axes):
            dS = newshape[a] - arr.shape[axis]
            startind = (dS + 1) // 2
            endind = dS - startind
            pad_width[axis] = (startind, endind)
    if mode == "constant" and constant_values == 0:
        result = fast_zero_pad(arr, pad_width)
    else:
        result = np.pad(arr, pad_width, mode=mode)
    return result 
開發者ID:pmelchior,項目名稱:scarlet,代碼行數:34,代碼來源:fft.py

示例8: __new__

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import asarray [as 別名]
def __new__(
        cls,
        array,
        name="unnamed",
        prior=None,
        constraint=None,
        step=0,
        std=None,
        m=None,
        v=None,
        vhat=None,
        fixed=False,
    ):
        obj = np.asarray(array, dtype=array.dtype).view(cls)
        obj.name = name
        if prior is not None:
            assert isinstance(prior, Prior)
        obj.prior = prior
        if constraint is not None:
            assert isinstance(constraint, Constraint) or isinstance(
                constraint, ConstraintChain
            )
        obj.constraint = constraint
        obj.step = step
        obj.std = std
        obj.m = m
        obj.v = v
        obj.vhat = vhat
        obj.fixed = fixed
        return obj 
開發者ID:pmelchior,項目名稱:scarlet,代碼行數:32,代碼來源:parameter.py

示例9: make_grad_softplus

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import asarray [as 別名]
def make_grad_softplus(ans, x):
    x = np.asarray(x)
    def gradient_product(g):
        return np.full(x.shape, g) * np.exp(x - ans)
    return gradient_product 
開發者ID:dtak,項目名稱:tree-regularization-public,代碼行數:7,代碼來源:model.py

示例10: print_training_prediction

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import asarray [as 別名]
def print_training_prediction(weights):
        print("Training text                         Predicted text")
        logprobs = np.asarray(rnn_predict(weights, train_inputs))
        for t in range(logprobs.shape[1]):
            training_text  = one_hot_to_string(train_inputs[:,t,:])
            predicted_text = one_hot_to_string(logprobs[:,t,:])
            print(training_text.replace('\n', ' ') + "|" +
                  predicted_text.replace('\n', ' ')) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:10,代碼來源:rnn.py

示例11: print_training_prediction

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import asarray [as 別名]
def print_training_prediction(weights):
        print("Training text                         Predicted text")
        logprobs = np.asarray(lstm_predict(weights, train_inputs))
        for t in range(logprobs.shape[1]):
            training_text  = one_hot_to_string(train_inputs[:,t,:])
            predicted_text = one_hot_to_string(logprobs[:,t,:])
            print(training_text.replace('\n', ' ') + "|" +
                  predicted_text.replace('\n', ' ')) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:10,代碼來源:lstm.py

示例12: multivariate_t_rvs

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import asarray [as 別名]
def multivariate_t_rvs(self, m, S, random_state = None):
            '''generate random variables of multivariate t distribution
            Parameters
            ----------
            m : array_like
                mean of random variable, length determines dimension of random variable
            S : array_like
                square array of covariance  matrix
            df : int or float
                degrees of freedom
            n : int
                number of observations, return random array will be (n, len(m))
            random_state : int
                           seed
            Returns
            -------
            rvs : ndarray, (n, len(m))
                each row is an independent draw of a multivariate t distributed
                random variable
            '''
            np.random.rand(9)
            m = np.asarray(m)
            d = self.n_features
            df = self.degree_freedom
            n = 1
            if df == np.inf:
                x = 1.
            else:
                x = random_state.chisquare(df, n)/df
            np.random.rand(90)

            z = random_state.multivariate_normal(np.zeros(d),S,(n,))
            return m + z/np.sqrt(x)[:,None]
            # same output format as random.multivariate_normal 
開發者ID:mackelab,項目名稱:autohmm,代碼行數:36,代碼來源:student.py

示例13: _set_mu_prior

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import asarray [as 別名]
def _set_mu_prior(self, mu_prior):
        if mu_prior is None:
            self._mu_prior_ = np.zeros((self.n_components, self.n_features))
        else:
            mu_prior = np.asarray(mu_prior)
            mu_prior = mu_prior.reshape(self.n_unique, self.n_features)
            if mu_prior.shape == (self.n_unique, self.n_features):
                for u in range(self.n_unique):
                    for t in range(self.n_chain):
                        self._mu_prior[u*(self.n_chain)+t] = mu_prior[u].copy()

            else:
                raise ValueError("cannot match shape of mu_prior") 
開發者ID:mackelab,項目名稱:autohmm,代碼行數:15,代碼來源:tm.py

示例14: _set_var_prior

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import asarray [as 別名]
def _set_var_prior(self, var_prior):
        var_prior = np.asarray(var_prior)
        if self.n_features == 1:
            self._set_precision_prior(1.0 / var_prior)
        else:
            self._set_precision_prior(np.linalg.inv(var_prior)) 
開發者ID:mackelab,項目名稱:autohmm,代碼行數:8,代碼來源:tm.py

示例15: _get_fft_shape

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import asarray [as 別名]
def _get_fft_shape(im_or_shape1, im_or_shape2, padding=3, axes=None, max=False):
    """Return the fast fft shapes for each spatial axis

    Calculate the fast fft shape for each dimension in
    axes.
    """
    if hasattr(im_or_shape1, "shape"):
        shape1 = np.asarray(im_or_shape1.shape)
    else:
        shape1 = np.asarray(im_or_shape1)
    if hasattr(im_or_shape2, "shape"):
        shape2 = np.asarray(im_or_shape2.shape)
    else:
        shape2 = np.asarray(im_or_shape2)
    # Make sure the shapes are the same size
    if len(shape1) != len(shape2):
        msg = (
            "img1 and img2 must have the same number of dimensions, but got {0} and {1}"
        )
        raise ValueError(msg.format(len(shape1), len(shape2)))
    # Set the combined shape based on the total dimensions
    if axes is None:
        if max:
            shape = np.max([shape1, shape2], axis=1)
        else:
            shape = shape1 + shape2
    else:
        shape = np.zeros(len(axes), dtype='int')
        try:
            len(axes)
        except TypeError:
            axes = [axes]
        for n, ax in enumerate(axes):
            shape[n] = shape1[ax] + shape2[ax]
            if max == True:
                shape[n] = np.max([shape1[ax], shape2[ax]])

    shape += padding
    # Use the next fastest shape in each dimension
    shape = [fftpack.helper.next_fast_len(s) for s in shape]
    # autograd.numpy.fft does not currently work
    # if the last dimension is odd
    while shape[-1] % 2 != 0:
        shape[-1] += 1
        shape[-1] = fftpack.helper.next_fast_len(shape[-1])
    if shape2[-2] % 2 == 0:
        while shape[-2] % 2 != 0:
            shape[-2] += 1
            shape[-2] = fftpack.helper.next_fast_len(shape[-2])

    return shape 
開發者ID:pmelchior,項目名稱:scarlet,代碼行數:53,代碼來源:fft.py


注:本文中的autograd.numpy.asarray方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。