當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.array方法代碼示例

本文整理匯總了Python中autograd.numpy.array方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.array方法的具體用法?Python numpy.array怎麽用?Python numpy.array使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在autograd.numpy的用法示例。


在下文中一共展示了numpy.array方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: fast_zero_pad

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import array [as 別名]
def fast_zero_pad(arr, pad_width):
    """Fast version of numpy.pad when `mode="constant"`

    Executing `numpy.pad` with zeros is ~1000 times slower
    because it doesn't make use of the `zeros` method for padding.

    Paramters
    ---------
    arr: array
        The array to pad
    pad_width: tuple
        Number of values padded to the edges of each axis.
        See numpy docs for more.

    Returns
    -------
    result: array
        The array padded with `constant_values`
    """
    newshape = tuple([a+ps[0]+ps[1] for a, ps in zip(arr.shape, pad_width)])

    result = np.zeros(newshape, dtype=arr.dtype)
    slices = tuple([slice(start, s-end) for s, (start, end) in zip(result.shape, pad_width)])
    result[slices] = arr
    return result 
開發者ID:pmelchior,項目名稱:scarlet,代碼行數:27,代碼來源:fft.py

示例2: __init__

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import array [as 別名]
def __init__(self, image, image_fft=None):
        """Initialize the object

        Parameters
        ----------
        image: array
            The real space image.
        image_fft: dict
            A dictionary of {shape: fft_value} for which each different
            shape has a precalculated FFT.
        axes: int or tuple
            The dimension(s) of the array that will be transformed.
        """
        if image_fft is None:
            self._fft = {}
        else:
            self._fft = image_fft
        self._image = image 
開發者ID:pmelchior,項目名稱:scarlet,代碼行數:20,代碼來源:fft.py

示例3: render

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import array [as 別名]
def render(self, model):
        """Convolve a model to the observation frame

        Parameters
        ----------
        model: array
            The model from `Blend`

        Returns
        -------
        image_model: array
            `model` mapped into the observation frame
        """
        if self._diff_kernels is not None:
            model_images = self.convolve(model)
        else:
            model_images = model
        return model_images[self.slices_for_model] 
開發者ID:pmelchior,項目名稱:scarlet,代碼行數:20,代碼來源:observation.py

示例4: get_loss

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import array [as 別名]
def get_loss(self, model):
        """Computes the loss/fidelity of a given model wrt to the observation

        Parameters
        ----------
        model: array
            The model from `Blend`

        Returns
        -------
        result: array
            Scalar tensor with the likelihood of the model
            given the image data
        """
        model_ = self.render(model)
        if self.frame != self.model_frame:
            images_ = self.images[self.slices_for_images]
            weights_ = self.weights[self.slices_for_images]
        else:
            images_ = self.images
            weights_ = self.weights

        return self.log_norm + np.sum(weights_ * (model_ - images_) ** 2) / 2 
開發者ID:pmelchior,項目名稱:scarlet,代碼行數:25,代碼來源:observation.py

示例5: G

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import array [as 別名]
def G(self):
        full_W = np.array([node.w for node in self.nodes])
        WB = full_W[:,1:].reshape((self.K,self.K, self.B))

        # Weight matrix is summed over impulse response functions
        WT = WB.sum(axis=2)

        # Impulse response weights are normalized weights
        GT = WB / WT[:,:,None]

        # Then we transpose so that the impuolse matrix is (outgoing x incoming x basis)
        G = np.transpose(GT, [1,0,2])

        # TODO: Decide if this is still necessary
        for k1 in range(self.K):
            for k2 in range(self.K):
                if G[k1,k2,:].sum() < 1e-2:
                    G[k1,k2,:] = 1.0/self.B
        return G 
開發者ID:slinderman,項目名稱:pyhawkes,代碼行數:21,代碼來源:standard_models.py

示例6: get_treeseq_configs

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import array [as 別名]
def get_treeseq_configs(treeseq, sampled_n):
    mat = np.zeros((len(sampled_n), sum(sampled_n)), dtype=int)
    j = 0
    for i, n in enumerate(sampled_n):
        for _ in range(n):
            mat[i, j] = 1
            j += 1
    mat = scipy.sparse.csr_matrix(mat)

    def get_config(genos):
        derived_counts = mat.dot(genos)
        return np.array([
            sampled_n - derived_counts,
            derived_counts
        ]).T

    for v in treeseq.variants():
        yield get_config(v.genotypes) 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:20,代碼來源:demography.py

示例7: _entropy

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import array [as 別名]
def _entropy(self):
        counts = self._total_freqs
        n_snps = float(self.n_snps())
        p = counts / n_snps
        # return np.sum(p * np.log(p))
        ret = np.sum(p * np.log(p))

        # correct for missing data
        sampled_n = np.sum(self.configs.value, axis=2)
        sampled_n_counts = co.Counter()
        assert len(counts) == len(sampled_n)
        for c, n in zip(counts, sampled_n):
            n = tuple(n)
            sampled_n_counts[n] += c
        sampled_n_counts = np.array(
            list(sampled_n_counts.values()), dtype=float)

        ret = ret + np.sum(sampled_n_counts / n_snps *
                           np.log(n_snps / sampled_n_counts))
        assert not np.isnan(ret)
        return ret 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:23,代碼來源:sfs.py

示例8: build_config_list

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import array [as 別名]
def build_config_list(sampled_pops, counts, sampled_n=None, ascertainment_pop=None):
    """
    if sampled_n is not None, counts is the derived allele counts

    if sampled_n is None, counts has an extra trailing axis:
      counts[...,0] is ancestral allele count,
      counts[...,1] is derived allele count
    """
    if sampled_n is not None:
        sampled_n = np.array(sampled_n, dtype=int)
        counts1 = np.array(counts, dtype=int, ndmin=2)
        counts0 = sampled_n - counts1
        counts = np.array([counts0, counts1], dtype=int)
        counts = np.transpose(counts, axes=[1, 2, 0])
    counts = np.array(counts, ndmin=3, dtype=int)
    assert counts.shape[1:] == (len(sampled_pops), 2)
    counts.setflags(write=False)
    return ConfigList(sampled_pops, counts, sampled_n, ascertainment_pop) 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:20,代碼來源:configurations.py

示例9: build_full_config_list

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import array [as 別名]
def build_full_config_list(sampled_pops, sampled_n, ascertainment_pop=None):
    sampled_n = np.array(sampled_n)
    if ascertainment_pop is None:
        ascertainment_pop = [True] * len(sampled_pops)
    ascertainment_pop = np.array(ascertainment_pop)

    ranges = [list(range(n + 1)) for n in sampled_n]
    config_list = []
    for x in it.product(*ranges):
        x = np.array(x, dtype=int)
        if not (np.all(x[ascertainment_pop] == 0) or np.all(
                x[ascertainment_pop] == sampled_n[ascertainment_pop])):
            config_list.append(x)
    return build_config_list(
        sampled_pops, np.array(config_list, dtype=int), sampled_n,
        ascertainment_pop=ascertainment_pop) 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:18,代碼來源:configurations.py

示例10: subsample_probs

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import array [as 別名]
def subsample_probs(self, subconfig):
        """
        Returns the probability of subsampling subconfig
        from each config.
        """
        subconfig = np.array(subconfig)
        total_counts_dict = {p: n for p, n in zip(self.sampled_pops,
                                                  subconfig.sum(axis=1))
                             if n > 0}
        derived_counts_dict = {p: [0]*(n+1)
                               for p, n in total_counts_dict.items()}
        for p, d in zip(self.sampled_pops, subconfig[:, 1]):
            if p in derived_counts_dict:
                derived_counts_dict[p][d] = 1

        num = self.count_subsets(derived_counts_dict, total_counts_dict)
        denom = self.count_subsets({}, total_counts_dict)

        # avoid 0/0
        assert np.all(num[denom == 0] == 0)
        denom[denom == 0] = 1
        return num / denom

    # TODO: remove this method (and self.sampled_n attribute) 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:26,代碼來源:configurations.py

示例11: _build_old_new_idxs

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import array [as 別名]
def _build_old_new_idxs(self, folded):
        idxs = self.full_configs._augmented_idxs(folded)

        denom_idx_key = 'denom_idx'
        denom_idx = idxs[denom_idx_key]
        idxs = {k: v[self.sub_idxs]
                for k, v in list(idxs.items()) if k != denom_idx_key}

        old_idxs = np.array(
            list(set(sum(map(list, idxs.values()), [denom_idx]))))
        old_2_new_idxs = {old_id: new_id for new_id,
                          old_id in enumerate(old_idxs)}

        idxs = {k: np.array([old_2_new_idxs[old_id]
                             for old_id in v], dtype=int)
                for k, v in list(idxs.items())}
        idxs[denom_idx_key] = old_2_new_idxs[denom_idx]
        return old_idxs, idxs 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:20,代碼來源:configurations.py

示例12: _many_score_cov

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import array [as 別名]
def _many_score_cov(params, data, demo_func, **kwargs):
    params = np.array(params)

    def f_vec(x):
        ret = _composite_log_likelihood(
            data, demo_func(*x), vector=True, **kwargs)
        # centralize
        return ret - np.mean(ret)

    # g_out = einsum('ij,ik', jacobian(f_vec)(params), jacobian(f_vec)(params))
    # but computed in a roundabout way because jacobian implementation is slow
    def _g_out_antihess(x):
        l = f_vec(x)
        lc = make_constant(l)
        return np.sum(0.5 * (l**2 - l * lc - lc * l))
    return autograd.hessian(_g_out_antihess)(params) 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:18,代碼來源:confidence_region.py

示例13: sfs

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import array [as 別名]
def sfs(self, n):
        if n == 0:
            return np.array([0.])
        Et_jj = self.etjj(n)
        #assert np.all(Et_jj[:-1] - Et_jj[1:] >= 0.0) and np.all(Et_jj >= 0.0) and np.all(Et_jj <= self.tau)

        ret = np.sum(Et_jj[:, None] * Wmatrix(n), axis=0)

        before_tmrca = self.tau - np.sum(ret * np.arange(1, n) / n)
        # ignore branch length above untruncated TMRCA
        if self.tau == float('inf'):
            before_tmrca = 0.0

        ret = np.concatenate((np.array([0.0]), ret, np.array([before_tmrca])))
        return ret

    # def transition_prob(self, v, axis=0):
    #     return moran_model.moran_action(self.scaled_time, v, axis=axis) 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:20,代碼來源:size_history.py

示例14: __init__

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import array [as 別名]
def __init__(self):
        super().__init__(n_var=4, n_obj=1, n_constr=4, type_var=anp.double)
        self.xl = anp.array([1, 1, 10.0, 10.0])
        self.xu = anp.array([99, 99, 200.0, 200.0]) 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:6,代碼來源:pressure_vessel.py

示例15: __init__

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import array [as 別名]
def __init__(self):
        self.n_var = 13
        self.n_constr = 9
        self.n_obj = 1
        self.xl = anp.zeros(self.n_var)
        self.xu = anp.array([1, 1, 1, 1, 1, 1, 1, 1, 1, 100, 100, 100, 1])
        super(G1, self).__init__(n_var=self.n_var, n_obj=self.n_obj, n_constr=self.n_constr, xl=self.xl, xu=self.xu,
                                 type_var=anp.double) 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:10,代碼來源:g.py


注:本文中的autograd.numpy.array方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。