本文整理匯總了Python中autograd.numpy.any方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.any方法的具體用法?Python numpy.any怎麽用?Python numpy.any使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類autograd.numpy
的用法示例。
在下文中一共展示了numpy.any方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _expected_sfs
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import any [as 別名]
def _expected_sfs(demography, configs, folded, error_matrices):
if np.any(configs.sampled_n != demography.sampled_n) or np.any(configs.sampled_pops != demography.sampled_pops):
raise ValueError(
"configs and demography must have same sampled_n, sampled_pops. Use Demography.copy() or ConfigList.copy() to make a copy with different sampled_n.")
vecs, idxs = configs._vecs_and_idxs(folded)
if error_matrices is not None:
vecs = _apply_error_matrices(vecs, error_matrices)
vals = expected_sfs_tensor_prod(vecs, demography)
sfs = vals[idxs['idx_2_row']]
if folded:
sfs = sfs + vals[idxs['folded_2_row']]
denom = vals[idxs['denom_idx']]
for i in (0, 1):
denom = denom - vals[idxs[("corrections_2_denom", i)]]
#assert np.all(np.logical_or(vals >= 0.0, np.isclose(vals, 0.0)))
return sfs, denom
示例2: _get_subsample_counts
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import any [as 別名]
def _get_subsample_counts(configs, n):
subconfigs, weights = [], []
for pop_comb in it.combinations_with_replacement(configs.sampled_pops, n):
subsample_n = co.Counter(pop_comb)
subsample_n = np.array([subsample_n[pop]
for pop in configs.sampled_pops], dtype=int)
if np.any(subsample_n > configs.sampled_n):
continue
for sfs_entry in it.product(*(range(sub_n + 1)
for sub_n in subsample_n)):
sfs_entry = np.array(sfs_entry, dtype=int)
if np.all(sfs_entry == 0) or np.all(sfs_entry == subsample_n):
# monomorphic
continue
sfs_entry = np.transpose([subsample_n - sfs_entry, sfs_entry])
cnt_vec = configs.subsample_probs(sfs_entry)
if not np.all(cnt_vec == 0):
subconfigs.append(sfs_entry)
weights.append(cnt_vec)
return np.array(subconfigs), np.array(weights)
示例3: __init__
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import any [as 別名]
def __init__(self, loci, configs, folded, length):
self.folded = folded
self._length = length
self.configs = configs
self.loc_idxs, self.loc_counts = [], []
for loc in loci:
if len(loc) == 0:
self.loc_idxs.append(np.array([], dtype=int))
self.loc_counts.append(np.array([], dtype=float))
else:
try:
loc.items()
except:
loc = np.array(loc)
if len(loc.shape) == 2:
assert loc.shape[0] == 2
idxs, cnts = loc[0, :], loc[1, :]
else:
idxs, cnts = np.unique(loc, return_counts=True)
else:
idxs, cnts = zip(*loc.items())
self.loc_idxs.append(np.array(idxs, dtype=int))
self.loc_counts.append(np.array(cnts, dtype=float))
if len(self.loc_idxs) > 1:
self._total_freqs = self.freqs_matrix.dot(np.ones(self.n_loci))
assert self._total_freqs.shape == (self.freqs_matrix.shape[0],)
else:
# avoid costly building of frequency matrix, when there are many
# Sfs's of a single locus (e.g. in many stochastic minibatches)
idxs, = self.loc_idxs
cnts, = self.loc_counts
self._total_freqs = np.zeros(len(self.configs))
self._total_freqs[idxs] = cnts
assert not np.any(self._total_freqs == 0)
示例4: __init__
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import any [as 別名]
def __init__(self, sampled_pops, conf_arr, sampled_n=None,
ascertainment_pop=None):
"""Use build_config_list() instead of calling this constructor directly"""
# If sampled_n=None, ConfigList.sampled_n will be the max number of
# observed individuals/alleles per population.
self.sampled_pops = tuple(sampled_pops)
self.value = conf_arr
if ascertainment_pop is None:
ascertainment_pop = [True] * len(sampled_pops)
self.ascertainment_pop = np.array(ascertainment_pop)
self.ascertainment_pop.setflags(write=False)
if all(not a for a in self.ascertainment_pop):
raise ValueError(
"At least one of the populations must be used for "
"ascertainment of polymorphic sites")
max_n = np.max(np.sum(self.value, axis=2), axis=0)
if sampled_n is None:
sampled_n = max_n
sampled_n = np.array(sampled_n)
if np.any(sampled_n < max_n):
raise ValueError("config greater than sampled_n")
self.sampled_n = sampled_n
if not np.sum(sampled_n[self.ascertainment_pop]) >= 2:
raise ValueError("The total sample size of the ascertainment "
"populations must be >= 2")
config_sampled_n = np.sum(self.value, axis=2)
self.has_missing_data = np.any(config_sampled_n != self.sampled_n)
if np.any(np.sum(self.value[:, self.ascertainment_pop, :], axis=1)
== 0):
raise ValueError("Monomorphic sites not allowed. In addition, all"
" sites must be polymorphic when restricted to"
" the ascertainment populations")
示例5: extract_tensors
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import any [as 別名]
def extract_tensors(x):
"""Iterate through an iterable, and extract any PennyLane
tensors that appear.
"""
if isinstance(x, tensor):
# If the item is a tensor, return it
yield x
elif isinstance(x, Sequence) and not isinstance(x, (str, bytes)):
# If the item is a sequence, recursively look through its
# elements for tensors.
# NOTE: we choose to branch on Sequence here and not Iterable,
# as NumPy arrays are not Sequences.
for item in x:
yield from extract_tensors(item)
示例6: test_max
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import any [as 別名]
def test_max(): stat_check(np.max)
# def test_all(): stat_check(np.all)
# def test_any(): stat_check(np.any)
示例7: __init__
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import any [as 別名]
def __init__(self, mean, cov):
"""
mean: a numpy array of length d.
cov: d x d numpy array for the covariance.
"""
self.mean = mean
self.cov = cov
assert mean.shape[0] == cov.shape[0]
assert cov.shape[0] == cov.shape[1]
E, V = np.linalg.eigh(cov)
if np.any(np.abs(E) <= 1e-7):
raise ValueError('covariance matrix is not full rank.')
# The precision matrix
self.prec = np.dot(np.dot(V, np.diag(old_div(1.0,E))), V.T)
#print self.prec
示例8: __init__
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import any [as 別名]
def __init__(self, model_frame, sky_coord, observations):
"""Source intialized with a single pixel
Parameters
----------
frame: `~scarlet.Frame`
The frame of the full model
sky_coord: tuple
Center of the source
observations: instance or list of `~scarlet.Observation`
Observation(s) to initialize this source
"""
C, Ny, Nx = model_frame.shape
self.center = np.array(model_frame.get_pixel(sky_coord), dtype="float")
# initialize SED from sky_coord
try:
iter(observations)
except TypeError:
observations = [observations]
# determine initial SED from peak position
# SED in the frame for source detection
seds = []
for obs in observations:
_sed = get_psf_sed(sky_coord, obs, model_frame)
seds.append(_sed)
sed = np.concatenate(seds).reshape(-1)
if np.any(sed <= 0):
# If the flux in all channels is <=0,
# the new sed will be filled with NaN values,
# which will cause the code to crash later
msg = "Zero or negative SED {} at y={}, x={}".format(sed, *sky_coord)
if np.all(sed <= 0):
logger.warning(msg)
else:
logger.info(msg)
# set up parameters
sed = Parameter(
sed,
name="sed",
step=partial(relative_step, factor=1e-2),
constraint=PositivityConstraint(),
)
center = Parameter(self.center, name="center", step=1e-1)
# define bbox
pixel_center = tuple(np.round(center).astype("int"))
front, back = 0, C
bottom = pixel_center[0] - model_frame.psf.shape[1] // 2
top = pixel_center[0] + model_frame.psf.shape[1] // 2
left = pixel_center[1] - model_frame.psf.shape[2] // 2
right = pixel_center[1] + model_frame.psf.shape[2] // 2
bbox = Box.from_bounds((front, back), (bottom, top), (left, right))
super().__init__(model_frame, bbox, sed, center, self._psf_wrapper)
示例9: simulate_vcf
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import any [as 別名]
def simulate_vcf(self, out_prefix, mutation_rate,
recombination_rate, length,
chrom_name=1, ploidy=1, random_seed=None,
force=False, print_aa=True):
out_prefix = os.path.expanduser(out_prefix)
vcf_name = out_prefix + ".vcf"
bed_name = out_prefix + ".bed"
for fname in (vcf_name, bed_name):
if not force and os.path.isfile(fname):
raise FileExistsError(
"{} exists and force=False".format(fname))
if np.any(self.sampled_n % ploidy != 0):
raise ValueError("Sampled alleles per population must be"
" integer multiple of ploidy")
with open(bed_name, "w") as bed_f:
print(chrom_name, 0, length, sep="\t", file=bed_f)
with open(vcf_name, "w") as vcf_f:
treeseq = self.simulate_trees(
mutation_rate=mutation_rate,
recombination_rate=recombination_rate,
length=length, num_replicates=1,
random_seed=random_seed)
print("##fileformat=VCFv4.2", file=vcf_f)
print('##source="VCF simulated by momi2 using'
' msprime backend"', file=vcf_f)
print("##contig=<ID={chrom_name},length={length}>".format(
chrom_name=chrom_name, length=length), file=vcf_f)
print('##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">',
file=vcf_f)
print('##INFO=<ID=AA,Number=1,Type=String,Description="Ancestral Allele">',
file=vcf_f)
n_samples = int(np.sum(self.sampled_n) / ploidy)
fields = ["#CHROM", "POS", "ID", "REF", "ALT", "QUAL",
"FILTER", "INFO", "FORMAT"]
for pop, n in zip(self.sampled_pops, self.sampled_n):
for i in range(int(n / ploidy)):
fields.append("{}_{}".format(pop, i))
print(*fields, sep="\t", file=vcf_f)
loc = next(treeseq)
if print_aa:
info_str = "AA=A"
else:
info_str = "."
for v in loc.variants():
gt = np.reshape(v.genotypes, (n_samples, ploidy))
print(chrom_name, int(np.floor(v.position)),
".", "A", "T", ".", ".", info_str, "GT",
*["|".join(map(str, sample)) for sample in gt],
sep="\t", file=vcf_f)
pysam.tabix_index(vcf_name, preset="vcf", force=force)
示例10: tensor_wrapper
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import any [as 別名]
def tensor_wrapper(obj):
"""Decorator that wraps callable objects and classes so that they both accept
a ``requires_grad`` keyword argument, as well as returning a PennyLane
:class:`~.tensor`.
Only if the decorated object returns an ``ndarray`` is the
output converted to a :class:`~.tensor`; this avoids superfluous conversion
of scalars and other native-Python types.
Args:
obj: a callable object or class
"""
@functools.wraps(obj)
def _wrapped(*args, **kwargs):
"""Wrapped NumPy function"""
tensor_kwargs = {}
if "requires_grad" in kwargs:
tensor_kwargs["requires_grad"] = kwargs.pop("requires_grad")
else:
tensor_args = list(extract_tensors(args))
if tensor_args:
# Unless the user specifies otherwise, if all tensors in the argument
# list are non-trainable, the output is also non-trainable.
# Equivalently: if any tensor is trainable, the output is also trainable.
# NOTE: Use of Python's ``any`` results in an infinite recursion,
# and I'm not sure why. Using ``np.any`` works fine.
tensor_kwargs["requires_grad"] = _np.any([i.requires_grad for i in tensor_args])
# evaluate the original object
res = obj(*args, **kwargs)
if isinstance(res, _np.ndarray):
# only if the output of the object is a ndarray,
# then convert to a PennyLane tensor
res = tensor(res, **tensor_kwargs)
return res
return _wrapped