當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.any方法代碼示例

本文整理匯總了Python中autograd.numpy.any方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.any方法的具體用法?Python numpy.any怎麽用?Python numpy.any使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在autograd.numpy的用法示例。


在下文中一共展示了numpy.any方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _expected_sfs

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import any [as 別名]
def _expected_sfs(demography, configs, folded, error_matrices):
    if np.any(configs.sampled_n != demography.sampled_n) or np.any(configs.sampled_pops != demography.sampled_pops):
        raise ValueError(
            "configs and demography must have same sampled_n, sampled_pops. Use Demography.copy() or ConfigList.copy() to make a copy with different sampled_n.")

    vecs, idxs = configs._vecs_and_idxs(folded)

    if error_matrices is not None:
        vecs = _apply_error_matrices(vecs, error_matrices)

    vals = expected_sfs_tensor_prod(vecs, demography)

    sfs = vals[idxs['idx_2_row']]
    if folded:
        sfs = sfs + vals[idxs['folded_2_row']]

    denom = vals[idxs['denom_idx']]
    for i in (0, 1):
        denom = denom - vals[idxs[("corrections_2_denom", i)]]

    #assert np.all(np.logical_or(vals >= 0.0, np.isclose(vals, 0.0)))

    return sfs, denom 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:25,代碼來源:compute_sfs.py

示例2: _get_subsample_counts

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import any [as 別名]
def _get_subsample_counts(configs, n):
    subconfigs, weights = [], []
    for pop_comb in it.combinations_with_replacement(configs.sampled_pops, n):
        subsample_n = co.Counter(pop_comb)
        subsample_n = np.array([subsample_n[pop]
                                for pop in configs.sampled_pops], dtype=int)
        if np.any(subsample_n > configs.sampled_n):
            continue

        for sfs_entry in it.product(*(range(sub_n + 1)
                                      for sub_n in subsample_n)):
            sfs_entry = np.array(sfs_entry, dtype=int)
            if np.all(sfs_entry == 0) or np.all(sfs_entry == subsample_n):
                # monomorphic
                continue

            sfs_entry = np.transpose([subsample_n - sfs_entry, sfs_entry])
            cnt_vec = configs.subsample_probs(sfs_entry)
            if not np.all(cnt_vec == 0):
                subconfigs.append(sfs_entry)
                weights.append(cnt_vec)

    return np.array(subconfigs), np.array(weights) 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:25,代碼來源:sfs.py

示例3: __init__

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import any [as 別名]
def __init__(self, loci, configs, folded, length):
        self.folded = folded
        self._length = length

        self.configs = configs

        self.loc_idxs, self.loc_counts = [], []
        for loc in loci:
            if len(loc) == 0:
                self.loc_idxs.append(np.array([], dtype=int))
                self.loc_counts.append(np.array([], dtype=float))
            else:
                try:
                    loc.items()
                except:
                    loc = np.array(loc)
                    if len(loc.shape) == 2:
                        assert loc.shape[0] == 2
                        idxs, cnts = loc[0, :], loc[1, :]
                    else:
                        idxs, cnts = np.unique(loc, return_counts=True)
                else:
                    idxs, cnts = zip(*loc.items())
                self.loc_idxs.append(np.array(idxs, dtype=int))
                self.loc_counts.append(np.array(cnts, dtype=float))

        if len(self.loc_idxs) > 1:
            self._total_freqs = self.freqs_matrix.dot(np.ones(self.n_loci))
            assert self._total_freqs.shape == (self.freqs_matrix.shape[0],)
        else:
            # avoid costly building of frequency matrix, when there are many
            # Sfs's of a single locus (e.g. in many stochastic minibatches)
            idxs, = self.loc_idxs
            cnts, = self.loc_counts
            self._total_freqs = np.zeros(len(self.configs))
            self._total_freqs[idxs] = cnts

        assert not np.any(self._total_freqs == 0) 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:40,代碼來源:sfs.py

示例4: __init__

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import any [as 別名]
def __init__(self, sampled_pops, conf_arr, sampled_n=None,
                 ascertainment_pop=None):
        """Use build_config_list() instead of calling this constructor directly"""
        # If sampled_n=None, ConfigList.sampled_n will be the max number of
        # observed individuals/alleles per population.
        self.sampled_pops = tuple(sampled_pops)
        self.value = conf_arr

        if ascertainment_pop is None:
            ascertainment_pop = [True] * len(sampled_pops)
        self.ascertainment_pop = np.array(ascertainment_pop)
        self.ascertainment_pop.setflags(write=False)
        if all(not a for a in self.ascertainment_pop):
            raise ValueError(
                "At least one of the populations must be used for "
                "ascertainment of polymorphic sites")

        max_n = np.max(np.sum(self.value, axis=2), axis=0)

        if sampled_n is None:
            sampled_n = max_n
        sampled_n = np.array(sampled_n)
        if np.any(sampled_n < max_n):
            raise ValueError("config greater than sampled_n")
        self.sampled_n = sampled_n
        if not np.sum(sampled_n[self.ascertainment_pop]) >= 2:
            raise ValueError("The total sample size of the ascertainment "
                             "populations must be >= 2")

        config_sampled_n = np.sum(self.value, axis=2)
        self.has_missing_data = np.any(config_sampled_n != self.sampled_n)

        if np.any(np.sum(self.value[:, self.ascertainment_pop, :], axis=1)
                  == 0):
            raise ValueError("Monomorphic sites not allowed. In addition, all"
                             " sites must be polymorphic when restricted to"
                             " the ascertainment populations") 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:39,代碼來源:configurations.py

示例5: extract_tensors

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import any [as 別名]
def extract_tensors(x):
    """Iterate through an iterable, and extract any PennyLane
    tensors that appear.
    """
    if isinstance(x, tensor):
        # If the item is a tensor, return it
        yield x
    elif isinstance(x, Sequence) and not isinstance(x, (str, bytes)):
        # If the item is a sequence, recursively look through its
        # elements for tensors.
        # NOTE: we choose to branch on Sequence here and not Iterable,
        # as NumPy arrays are not Sequences.
        for item in x:
            yield from extract_tensors(item) 
開發者ID:XanaduAI,項目名稱:pennylane,代碼行數:16,代碼來源:wrapper.py

示例6: test_max

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import any [as 別名]
def test_max():  stat_check(np.max)
# def test_all():  stat_check(np.all)
# def test_any():  stat_check(np.any) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:5,代碼來源:test_systematic.py

示例7: __init__

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import any [as 別名]
def __init__(self, mean, cov):
        """
        mean: a numpy array of length d.
        cov: d x d numpy array for the covariance.
        """
        self.mean = mean 
        self.cov = cov
        assert mean.shape[0] == cov.shape[0]
        assert cov.shape[0] == cov.shape[1]
        E, V = np.linalg.eigh(cov)
        if np.any(np.abs(E) <= 1e-7):
            raise ValueError('covariance matrix is not full rank.')
        # The precision matrix
        self.prec = np.dot(np.dot(V, np.diag(old_div(1.0,E))), V.T)
        #print self.prec 
開發者ID:wittawatj,項目名稱:kernel-gof,代碼行數:17,代碼來源:density.py

示例8: __init__

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import any [as 別名]
def __init__(self, model_frame, sky_coord, observations):
        """Source intialized with a single pixel

        Parameters
        ----------
        frame: `~scarlet.Frame`
            The frame of the full model
        sky_coord: tuple
            Center of the source
        observations: instance or list of `~scarlet.Observation`
            Observation(s) to initialize this source
        """
        C, Ny, Nx = model_frame.shape
        self.center = np.array(model_frame.get_pixel(sky_coord), dtype="float")

        # initialize SED from sky_coord
        try:
            iter(observations)
        except TypeError:
            observations = [observations]

        # determine initial SED from peak position
        # SED in the frame for source detection
        seds = []
        for obs in observations:
            _sed = get_psf_sed(sky_coord, obs, model_frame)
            seds.append(_sed)
        sed = np.concatenate(seds).reshape(-1)

        if np.any(sed <= 0):
            # If the flux in all channels is  <=0,
            # the new sed will be filled with NaN values,
            # which will cause the code to crash later
            msg = "Zero or negative SED {} at y={}, x={}".format(sed, *sky_coord)
            if np.all(sed <= 0):
                logger.warning(msg)
            else:
                logger.info(msg)

        # set up parameters
        sed = Parameter(
            sed,
            name="sed",
            step=partial(relative_step, factor=1e-2),
            constraint=PositivityConstraint(),
        )
        center = Parameter(self.center, name="center", step=1e-1)

        # define bbox
        pixel_center = tuple(np.round(center).astype("int"))
        front, back = 0, C
        bottom = pixel_center[0] - model_frame.psf.shape[1] // 2
        top = pixel_center[0] + model_frame.psf.shape[1] // 2
        left = pixel_center[1] - model_frame.psf.shape[2] // 2
        right = pixel_center[1] + model_frame.psf.shape[2] // 2
        bbox = Box.from_bounds((front, back), (bottom, top), (left, right))

        super().__init__(model_frame, bbox, sed, center, self._psf_wrapper) 
開發者ID:pmelchior,項目名稱:scarlet,代碼行數:60,代碼來源:source.py

示例9: simulate_vcf

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import any [as 別名]
def simulate_vcf(self, out_prefix, mutation_rate,
                     recombination_rate, length,
                     chrom_name=1, ploidy=1, random_seed=None,
                     force=False, print_aa=True):
        out_prefix = os.path.expanduser(out_prefix)
        vcf_name = out_prefix + ".vcf"
        bed_name = out_prefix + ".bed"
        for fname in (vcf_name, bed_name):
            if not force and os.path.isfile(fname):
                raise FileExistsError(
                    "{} exists and force=False".format(fname))

        if np.any(self.sampled_n % ploidy != 0):
            raise ValueError("Sampled alleles per population must be"
                             " integer multiple of ploidy")

        with open(bed_name, "w") as bed_f:
            print(chrom_name, 0, length, sep="\t", file=bed_f)

        with open(vcf_name, "w") as vcf_f:
            treeseq = self.simulate_trees(
                mutation_rate=mutation_rate,
                recombination_rate=recombination_rate,
                length=length, num_replicates=1,
                random_seed=random_seed)

            print("##fileformat=VCFv4.2", file=vcf_f)
            print('##source="VCF simulated by momi2 using'
                  ' msprime backend"', file=vcf_f)
            print("##contig=<ID={chrom_name},length={length}>".format(
                chrom_name=chrom_name, length=length), file=vcf_f)
            print('##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">',
                  file=vcf_f)
            print('##INFO=<ID=AA,Number=1,Type=String,Description="Ancestral Allele">',
                  file=vcf_f)

            n_samples = int(np.sum(self.sampled_n) / ploidy)
            fields = ["#CHROM", "POS", "ID", "REF", "ALT", "QUAL",
                      "FILTER", "INFO", "FORMAT"]
            for pop, n in zip(self.sampled_pops, self.sampled_n):
                for i in range(int(n / ploidy)):
                    fields.append("{}_{}".format(pop, i))
            print(*fields, sep="\t", file=vcf_f)

            loc = next(treeseq)
            if print_aa:
                info_str = "AA=A"
            else:
                info_str = "."

            for v in loc.variants():
                gt = np.reshape(v.genotypes, (n_samples, ploidy))
                print(chrom_name, int(np.floor(v.position)),
                      ".", "A", "T", ".", ".", info_str, "GT",
                      *["|".join(map(str, sample)) for sample in gt],
                      sep="\t", file=vcf_f)

        pysam.tabix_index(vcf_name, preset="vcf", force=force) 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:60,代碼來源:demography.py

示例10: tensor_wrapper

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import any [as 別名]
def tensor_wrapper(obj):
    """Decorator that wraps callable objects and classes so that they both accept
    a ``requires_grad`` keyword argument, as well as returning a PennyLane
    :class:`~.tensor`.

    Only if the decorated object returns an ``ndarray`` is the
    output converted to a :class:`~.tensor`; this avoids superfluous conversion
    of scalars and other native-Python types.

    Args:
        obj: a callable object or class
    """

    @functools.wraps(obj)
    def _wrapped(*args, **kwargs):
        """Wrapped NumPy function"""

        tensor_kwargs = {}

        if "requires_grad" in kwargs:
            tensor_kwargs["requires_grad"] = kwargs.pop("requires_grad")
        else:
            tensor_args = list(extract_tensors(args))

            if tensor_args:
                # Unless the user specifies otherwise, if all tensors in the argument
                # list are non-trainable, the output is also non-trainable.
                # Equivalently: if any tensor is trainable, the output is also trainable.
                # NOTE: Use of Python's ``any`` results in an infinite recursion,
                # and I'm not sure why. Using ``np.any`` works fine.
                tensor_kwargs["requires_grad"] = _np.any([i.requires_grad for i in tensor_args])

        # evaluate the original object
        res = obj(*args, **kwargs)

        if isinstance(res, _np.ndarray):
            # only if the output of the object is a ndarray,
            # then convert to a PennyLane tensor
            res = tensor(res, **tensor_kwargs)

        return res

    return _wrapped 
開發者ID:XanaduAI,項目名稱:pennylane,代碼行數:45,代碼來源:wrapper.py


注:本文中的autograd.numpy.any方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。