本文整理匯總了Python中autograd.numpy.allclose方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.allclose方法的具體用法?Python numpy.allclose怎麽用?Python numpy.allclose使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類autograd.numpy
的用法示例。
在下文中一共展示了numpy.allclose方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _test_hvp
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import allclose [as 別名]
def _test_hvp(func, optimized):
np.random.seed(0)
a = np.random.normal(scale=1, size=(300,)).astype('float32')
v = a.ravel()
modes = ['forward', 'reverse']
for mode1 in modes:
for mode2 in modes:
if mode1 == mode2 == 'forward':
continue
df = tangent.autodiff(
func,
mode=mode1,
motion='joint',
optimized=optimized,
check_dims=False)
ddf = tangent.autodiff(
df, mode=mode2, motion='joint', optimized=optimized, check_dims=False)
dx = ddf(a, 1, v)
hvp_ag = hessian_vector_product(func)
dx_ag = hvp_ag(a, v)
assert np.allclose(dx, dx_ag)
示例2: check_gradient
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import allclose [as 別名]
def check_gradient(f, x):
print(x, "\n", f(x))
print("# grad2")
grad2 = Gradient(f)(x)
print("# building grad1")
g = grad(f)
print("# computing grad1")
grad1 = g(x)
print("gradient1\n", grad1, "\ngradient2\n", grad2)
np.allclose(grad1, grad2)
# check Hessian vector product
y = np.random.normal(size=x.shape)
gdot = lambda u: np.dot(g(u), y)
hess1, hess2 = grad(gdot)(x), Gradient(gdot)(x)
print("hess1\n", hess1, "\nhess2\n", hess2)
np.allclose(hess1, hess2)
示例3: check_random_tensor
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import allclose [as 別名]
def check_random_tensor(demo, *args, **kwargs):
leaves = demo.sampled_pops
ranges = [list(range(n + 1)) for n in demo.sampled_n]
config_list = momi.data.configurations.build_full_config_list(demo.sampled_pops, demo.sampled_n)
esfs = expected_sfs(demo, config_list, *args, **kwargs)
tensor_components = [np.random.normal(size=(1, n + 1)) for n in demo.sampled_n]
#tensor_components_list = tuple(v[0,:] for _,v in sorted(tensor_components.iteritems()))
#prod1 = sfs_tensor_prod(dict(list(zip(config_list,esfs))), tensor_components)
# sfs = momi.site_freq_spectrum(demo.sampled_pops, [dict(zip((tuple(map(tuple,c)) for c in config_list),
# esfs))])
sfs = momi.site_freq_spectrum(demo.sampled_pops,
[{tuple(map(tuple, c)): s for c, s in zip(config_list, esfs)}])
#assert sfs.get_dict() == {tuple(map(tuple,c)): s for c,s in zip(config_list, esfs)}
prod1 = sfs_tensor_prod(sfs, tensor_components)
# prod1 = sfs_tensor_prod({tuple(map(tuple,c)): s for c,s in zip(config_list, esfs)},
# tensor_components)
prod2 = expected_sfs_tensor_prod(
tensor_components, demo, sampled_pops=demo.sampled_pops)
assert np.allclose(prod1, prod2)
示例4: compute_stats
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import allclose [as 別名]
def compute_stats(demo, sampled_sfs, true_sfs=None, true_branch_len=None):
sampled_sfs = momi.site_freq_spectrum(demo.leafs, to_dict(sampled_sfs))
demo.set_data(sampled_sfs, length=1)
demo.set_mut_rate(1)
exp_branch_len = demo.expected_branchlen()
exp_sfs = demo.expected_sfs()
configs = sorted([tuple(map(tuple, c)) for c in sampled_sfs.configs])
exp_sfs = np.array([exp_sfs[c] for c in configs])
# use ms units
exp_branch_len = exp_branch_len / 4.0 / demo.N_e
exp_sfs = exp_sfs / 4.0 / demo.N_e
if true_sfs is not None:
assert np.allclose(true_sfs, exp_sfs, rtol=1e-4)
if true_branch_len is not None:
assert np.allclose(true_branch_len, exp_branch_len, rtol=1e-4)
return exp_sfs, exp_branch_len
示例5: EM
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import allclose [as 別名]
def EM(init_params, data, callback=None):
def EM_update(params):
natural_params = list(map(np.log, params))
loglike, E_stats = vgrad(log_partition_function)(natural_params, data) # E step
if callback: callback(loglike, params)
return list(map(normalize, E_stats)) # M step
def fixed_point(f, x0):
x1 = f(x0)
while different(x0, x1):
x0, x1 = x1, f(x1)
return x1
def different(params1, params2):
allclose = partial(np.allclose, atol=1e-3, rtol=1e-3)
return not all(map(allclose, params1, params2))
return fixed_point(EM_update, init_params)
示例6: test_getter
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import allclose [as 別名]
def test_getter():
def fun(input_list):
A = np.sum(input_list[0])
B = np.sum(input_list[1])
C = np.sum(input_list[1])
return A + B + C
d_fun = grad(fun)
input_list = [npr.randn(5, 6),
npr.randn(4, 3),
npr.randn(2, 4)]
result = d_fun(input_list)
assert np.allclose(result[0], np.ones((5, 6)))
assert np.allclose(result[1], 2 * np.ones((4, 3)))
assert np.allclose(result[2], np.zeros((2, 4)))
示例7: test_getter
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import allclose [as 別名]
def test_getter():
def fun(input_tuple):
A = np.sum(input_tuple[0])
B = np.sum(input_tuple[1])
C = np.sum(input_tuple[1])
return A + B + C
d_fun = grad(fun)
input_tuple = (npr.randn(5, 6),
npr.randn(4, 3),
npr.randn(2, 4))
result = d_fun(input_tuple)
assert np.allclose(result[0], np.ones((5, 6)))
assert np.allclose(result[1], 2 * np.ones((4, 3)))
assert np.allclose(result[2], np.zeros((2, 4)))
示例8: test_getter
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import allclose [as 別名]
def test_getter():
def fun(input_dict):
A = np.sum(input_dict['item_1'])
B = np.sum(input_dict['item_2'])
C = np.sum(input_dict['item_2'])
return A + B + C
d_fun = grad(fun)
input_dict = {'item_1' : npr.randn(5, 6),
'item_2' : npr.randn(4, 3),
'item_X' : npr.randn(2, 4)}
result = d_fun(input_dict)
assert np.allclose(result['item_1'], np.ones((5, 6)))
assert np.allclose(result['item_2'], 2 * np.ones((4, 3)))
assert np.allclose(result['item_X'], np.zeros((2, 4)))
示例9: __init__
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import allclose [as 別名]
def __init__(self, degree=3, gamma=None, coef0=1):
"""
Polynomial kernel
(gamma X^T Y + coef0)^degree
degree: default 3
gamma: default 1/dim
coef0: float, default 1
"""
self.degree = degree
self.gamma = gamma
self.coef0 = coef0
if degree <= 0:
raise ValueError("KPoly needs positive degree")
if not np.allclose(degree, int(degree)):
raise ValueError("KPoly needs integral degree")
示例10: _set_startprob
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import allclose [as 別名]
def _set_startprob(self, startprob):
if startprob is None:
startprob = np.tile(1.0 / self.n_components, self.n_components)
else:
startprob = np.asarray(startprob, dtype=np.float)
normalize(startprob)
if len(startprob) != self.n_components:
if len(startprob) == self.n_unique:
startprob_split = np.copy(startprob) / (1.0+self.n_tied)
startprob = np.zeros(self.n_components)
for u in range(self.n_unique):
for t in range(self.n_chain):
startprob[u*(self.n_chain)+t] = \
startprob_split[u].copy()
else:
raise ValueError("cannot match shape of startprob")
if not np.allclose(np.sum(startprob), 1.0):
raise ValueError('startprob must sum to 1.0')
self._log_startprob = np.log(np.asarray(startprob).copy())
示例11: _set_transmat
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import allclose [as 別名]
def _set_transmat(self, transmat_val):
if transmat_val is None:
transmat = np.tile(1.0 / self.n_components,
(self.n_components, self.n_components))
else:
transmat_val[np.isnan(transmat_val)] = 0.0
normalize(transmat_val, axis=1)
if (np.asarray(transmat_val).shape == (self.n_components,
self.n_components)):
transmat = np.copy(transmat_val)
elif transmat_val.shape[0] == self.n_unique:
transmat = self._ntied_transmat(transmat_val)
else:
raise ValueError("cannot match shape of transmat")
if not np.all(np.allclose(np.sum(transmat, axis=1), 1.0)):
raise ValueError('Rows of transmat must sum to 1.0')
self._log_transmat = np.log(np.asarray(transmat).copy())
underflow_idx = np.isnan(self._log_transmat)
self._log_transmat[underflow_idx] = NEGINF
示例12: add_data
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import allclose [as 別名]
def add_data(self, S, F=None):
"""
Add a data set to the list of observations.
First, filter the data with the impulse response basis,
then instantiate a set of parents for this data set.
:param S: a TxK matrix of of event counts for each time bin
and each process.
"""
assert isinstance(S, np.ndarray) and S.ndim == 2 and S.shape[1] == self.K \
and np.amin(S) >= 0 and S.dtype == np.int, \
"Data must be a TxK array of event counts"
T = S.shape[0]
if F is None:
# Filter the data into a TxKxB array
Ftens = self.basis.convolve_with_basis(S)
# Flatten this into a T x (KxB) matrix
# [F00, F01, F02, F10, F11, ... F(K-1)0, F(K-1)(B-1)]
F = Ftens.reshape((T, self.K * self.B))
assert np.allclose(F[:,0], Ftens[:,0,0])
if self.B > 1:
assert np.allclose(F[:,1], Ftens[:,0,1])
if self.K > 1:
assert np.allclose(F[:,self.B], Ftens[:,1,0])
# Prepend a column of ones
F = np.hstack((np.ones((T,1)), F))
for k,node in enumerate(self.nodes):
node.add_data(F, S[:,k])
示例13: check_symmetric
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import allclose [as 別名]
def check_symmetric(X):
Xt = np.transpose(X)
assert np.allclose(X, Xt)
return 0.5 * (X + Xt)
示例14: check_psd
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import allclose [as 別名]
def check_psd(X, **tol_kwargs):
X = check_symmetric(X)
d, U = np.linalg.eigh(X)
d = truncate0(d, **tol_kwargs)
ret = np.dot(U, np.dot(np.diag(d), np.transpose(U)))
#assert np.allclose(ret, X)
return np.array(ret, ndmin=2)
示例15: check_probs_matrix
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import allclose [as 別名]
def check_probs_matrix(x):
x = truncate0(x)
rowsums = np.sum(x, axis=1)
assert np.allclose(rowsums, 1.0)
return np.einsum('ij,i->ij', x, 1.0 / rowsums)