當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.all方法代碼示例

本文整理匯總了Python中autograd.numpy.all方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.all方法的具體用法?Python numpy.all怎麽用?Python numpy.all使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在autograd.numpy的用法示例。


在下文中一共展示了numpy.all方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_problems

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import all [as 別名]
def test_problems(self):
        for entry in problems:
            name, params = entry
            print("Testing: " + name)

            X, F, CV = load(name)

            if F is None:
                print("Warning: No correctness check for %s" % name)
                continue

            problem = get_problem(name, *params)
            _F, _G, _CV, _dF, _dG = problem.evaluate(X, return_values_of=["F", "G", "CV", "dF", "dG"])

            if problem.n_obj == 1:
                F = F[:, None]

            self.assertTrue(anp.all(anp.abs(_F - F) < 0.00001))

            if problem.n_constr > 0:
                self.assertTrue(anp.all(anp.abs(_CV[:, 0] - CV) < 0.0001)) 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:23,代碼來源:test_correctness.py

示例2: truncate0

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import all [as 別名]
def truncate0(x, axis=None, strict=False, tol=1e-13):
    '''make sure everything in x is non-negative'''
    # the maximum along axis
    maxes = np.maximum(np.amax(x, axis=axis), 1e-300)
    # the negative part of minimum along axis
    mins = np.maximum(-np.amin(x, axis=axis), 0.0)

    # assert the negative numbers are small (relative to maxes)
    assert np.all(mins <= tol * maxes)

    if axis is not None:
        idx = [slice(None)] * x.ndim
        idx[axis] = np.newaxis
        mins = mins[idx]
        maxes = maxes[idx]

    if strict:
        # set everything below the tolerance to 0
        return set0(x, x < tol * maxes)
    else:
        # set everything of same magnitude as most negative number, to 0
        return set0(x, x < 2 * mins) 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:24,代碼來源:util.py

示例3: _expected_sfs

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import all [as 別名]
def _expected_sfs(demography, configs, folded, error_matrices):
    if np.any(configs.sampled_n != demography.sampled_n) or np.any(configs.sampled_pops != demography.sampled_pops):
        raise ValueError(
            "configs and demography must have same sampled_n, sampled_pops. Use Demography.copy() or ConfigList.copy() to make a copy with different sampled_n.")

    vecs, idxs = configs._vecs_and_idxs(folded)

    if error_matrices is not None:
        vecs = _apply_error_matrices(vecs, error_matrices)

    vals = expected_sfs_tensor_prod(vecs, demography)

    sfs = vals[idxs['idx_2_row']]
    if folded:
        sfs = sfs + vals[idxs['folded_2_row']]

    denom = vals[idxs['denom_idx']]
    for i in (0, 1):
        denom = denom - vals[idxs[("corrections_2_denom", i)]]

    #assert np.all(np.logical_or(vals >= 0.0, np.isclose(vals, 0.0)))

    return sfs, denom 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:25,代碼來源:compute_sfs.py

示例4: _get_subsample_counts

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import all [as 別名]
def _get_subsample_counts(configs, n):
    subconfigs, weights = [], []
    for pop_comb in it.combinations_with_replacement(configs.sampled_pops, n):
        subsample_n = co.Counter(pop_comb)
        subsample_n = np.array([subsample_n[pop]
                                for pop in configs.sampled_pops], dtype=int)
        if np.any(subsample_n > configs.sampled_n):
            continue

        for sfs_entry in it.product(*(range(sub_n + 1)
                                      for sub_n in subsample_n)):
            sfs_entry = np.array(sfs_entry, dtype=int)
            if np.all(sfs_entry == 0) or np.all(sfs_entry == subsample_n):
                # monomorphic
                continue

            sfs_entry = np.transpose([subsample_n - sfs_entry, sfs_entry])
            cnt_vec = configs.subsample_probs(sfs_entry)
            if not np.all(cnt_vec == 0):
                subconfigs.append(sfs_entry)
                weights.append(cnt_vec)

    return np.array(subconfigs), np.array(weights) 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:25,代碼來源:sfs.py

示例5: build_full_config_list

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import all [as 別名]
def build_full_config_list(sampled_pops, sampled_n, ascertainment_pop=None):
    sampled_n = np.array(sampled_n)
    if ascertainment_pop is None:
        ascertainment_pop = [True] * len(sampled_pops)
    ascertainment_pop = np.array(ascertainment_pop)

    ranges = [list(range(n + 1)) for n in sampled_n]
    config_list = []
    for x in it.product(*ranges):
        x = np.array(x, dtype=int)
        if not (np.all(x[ascertainment_pop] == 0) or np.all(
                x[ascertainment_pop] == sampled_n[ascertainment_pop])):
            config_list.append(x)
    return build_config_list(
        sampled_pops, np.array(config_list, dtype=int), sampled_n,
        ascertainment_pop=ascertainment_pop) 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:18,代碼來源:configurations.py

示例6: fit_gaussian_draw

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import all [as 別名]
def fit_gaussian_draw(X, J, seed=28, reg=1e-7, eig_pow=1.0):
    """
    Fit a multivariate normal to the data X (n x d) and draw J points 
    from the fit. 
    - reg: regularizer to use with the covariance matrix
    - eig_pow: raise eigenvalues of the covariance matrix to this power to construct 
        a new covariance matrix before drawing samples. Useful to shrink the spread 
        of the variance.
    """
    with NumpySeedContext(seed=seed):
        d = X.shape[1]
        mean_x = np.mean(X, 0)
        cov_x = np.cov(X.T)
        if d==1:
            cov_x = np.array([[cov_x]])
        [evals, evecs] = np.linalg.eig(cov_x)
        evals = np.maximum(0, np.real(evals))
        assert np.all(np.isfinite(evals))
        evecs = np.real(evecs)
        shrunk_cov = evecs.dot(np.diag(evals**eig_pow)).dot(evecs.T) + reg*np.eye(d)
        V = np.random.multivariate_normal(mean_x, shrunk_cov, J)
    return V 
開發者ID:wittawatj,項目名稱:kernel-gof,代碼行數:24,代碼來源:util.py

示例7: bound_by_data

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import all [as 別名]
def bound_by_data(Z, Data):
    """
    Determine lower and upper bound for each dimension from the Data, and project 
    Z so that all points in Z live in the bounds.

    Z: m x d 
    Data: n x d

    Return a projected Z of size m x d.
    """
    n, d = Z.shape
    Low = np.min(Data, 0)
    Up = np.max(Data, 0)
    LowMat = np.repeat(Low[np.newaxis, :], n, axis=0)
    UpMat = np.repeat(Up[np.newaxis, :], n, axis=0)

    Z = np.maximum(LowMat, Z)
    Z = np.minimum(UpMat, Z)
    return Z 
開發者ID:wittawatj,項目名稱:kernel-gof,代碼行數:21,代碼來源:util.py

示例8: _set_transmat

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import all [as 別名]
def _set_transmat(self, transmat_val):
        if transmat_val is None:
            transmat = np.tile(1.0 / self.n_components,
                               (self.n_components, self.n_components))
        else:
            transmat_val[np.isnan(transmat_val)] = 0.0
            normalize(transmat_val, axis=1)

            if (np.asarray(transmat_val).shape == (self.n_components,
                                                   self.n_components)):
                transmat = np.copy(transmat_val)
            elif transmat_val.shape[0] == self.n_unique:
                transmat = self._ntied_transmat(transmat_val)
            else:
                raise ValueError("cannot match shape of transmat")

        if not np.all(np.allclose(np.sum(transmat, axis=1), 1.0)):
            raise ValueError('Rows of transmat must sum to 1.0')
        self._log_transmat = np.log(np.asarray(transmat).copy())
        underflow_idx = np.isnan(self._log_transmat)
        self._log_transmat[underflow_idx] = NEGINF 
開發者ID:mackelab,項目名稱:autohmm,代碼行數:23,代碼來源:tm.py

示例9: test_problems

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import all [as 別名]
def test_problems(self):

        for n_obj, n_var, k in [(2, 6, 4), (3, 6, 4), (10, 20, 18)]:

            problems = [
                get_problem("wfg1", n_var, n_obj, k),
                get_problem("wfg2", n_var, n_obj, k),
                get_problem("wfg3", n_var, n_obj, k),
                get_problem("wfg4", n_var, n_obj, k),
                get_problem("wfg5", n_var, n_obj, k),
                get_problem("wfg6", n_var, n_obj, k),
                get_problem("wfg7", n_var, n_obj, k),
                get_problem("wfg8", n_var, n_obj, k),
                get_problem("wfg9", n_var, n_obj, k)
            ]

            for problem in problems:
                name = str(problem.__class__.__name__)
                print("Testing: " + name + "-" + str(n_obj))

                X, F, CV = load(name, n_obj)

                # other = from_optproblems(problem)
                # F = np.row_stack([other.objective_function(x) for x in X])

                if F is None:
                    print("Warning: No correctness check for %s" % name)
                    continue

                _F, _G, _CV = problem.evaluate(X, return_values_of=["F", "G", "CV"])

                if problem.n_obj == 1:
                    F = F[:, None]

                self.assertTrue(anp.all(anp.abs(_F - F) < 0.00001))

                if problem.n_constr > 0:
                    self.assertTrue(anp.all(anp.abs(_CV[:, 0] - CV) < 0.0001)) 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:40,代碼來源:test_problems_wfg.py

示例10: _centered

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import all [as 別名]
def _centered(arr, newshape):
    """Return the center newshape portion of the array.

    This function is used by `fft_convolve` to remove
    the zero padded region of the convolution.

    Note: If the array shape is odd and the target is even,
    the center of `arr` is shifted to the center-right
    pixel position.
    This is slightly different than the scipy implementation,
    which uses the center-left pixel for the array center.
    The reason for the difference is that we have
    adopted the convention of `np.fft.fftshift` in order
    to make sure that changing back and forth from
    fft standard order (0 frequency and position is
    in the bottom left) to 0 position in the center.
    """
    newshape = np.asarray(newshape)
    currshape = np.array(arr.shape)

    if not np.all(newshape <= currshape):
        msg = (
            "arr must be larger than newshape in both dimensions, received {0}, and {1}"
        )
        raise ValueError(msg.format(arr.shape, newshape))

    startind = (currshape - newshape + 1) // 2
    endind = startind + newshape
    myslice = [slice(startind[k], endind[k]) for k in range(len(endind))]

    return arr[tuple(myslice)] 
開發者ID:pmelchior,項目名稱:scarlet,代碼行數:33,代碼來源:fft.py

示例11: combine_loci

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import all [as 別名]
def combine_loci(self):
        # return copy with all loci combined
        return self.from_matrix(self.freqs_matrix.sum(axis=1),
                                self.configs, self.folded,
                                self._length) 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:7,代碼來源:sfs.py

示例12: __init__

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import all [as 別名]
def __init__(self, sampled_pops, conf_arr, sampled_n=None,
                 ascertainment_pop=None):
        """Use build_config_list() instead of calling this constructor directly"""
        # If sampled_n=None, ConfigList.sampled_n will be the max number of
        # observed individuals/alleles per population.
        self.sampled_pops = tuple(sampled_pops)
        self.value = conf_arr

        if ascertainment_pop is None:
            ascertainment_pop = [True] * len(sampled_pops)
        self.ascertainment_pop = np.array(ascertainment_pop)
        self.ascertainment_pop.setflags(write=False)
        if all(not a for a in self.ascertainment_pop):
            raise ValueError(
                "At least one of the populations must be used for "
                "ascertainment of polymorphic sites")

        max_n = np.max(np.sum(self.value, axis=2), axis=0)

        if sampled_n is None:
            sampled_n = max_n
        sampled_n = np.array(sampled_n)
        if np.any(sampled_n < max_n):
            raise ValueError("config greater than sampled_n")
        self.sampled_n = sampled_n
        if not np.sum(sampled_n[self.ascertainment_pop]) >= 2:
            raise ValueError("The total sample size of the ascertainment "
                             "populations must be >= 2")

        config_sampled_n = np.sum(self.value, axis=2)
        self.has_missing_data = np.any(config_sampled_n != self.sampled_n)

        if np.any(np.sum(self.value[:, self.ascertainment_pop, :], axis=1)
                  == 0):
            raise ValueError("Monomorphic sites not allowed. In addition, all"
                             " sites must be polymorphic when restricted to"
                             " the ascertainment populations") 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:39,代碼來源:configurations.py

示例13: __eq__

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import all [as 別名]
def __eq__(self, other):
        conf_arr = self.value
        try:
            return np.all(conf_arr == other.value)
        except AttributeError:
            return False 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:8,代碼來源:configurations.py

示例14: transformed_expi

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import all [as 別名]
def transformed_expi(x):
    abs_x = np.abs(x)
    ser = abs_x < 1. / 45.
    nser = np.logical_not(ser)

#     ret = np.zeros(x.shape)
#     ret[ser], ret[nser] = transformed_expi_series(x[ser]), transformed_expi_naive(x[nser])))
#     return ret

    # We use np.concatenate to combine.
    # would be better to use ret[ser] and ret[nser] as commented out above
    # but array assignment not yet supported by autograd
    assert np.all(abs_x[:-1] >= abs_x[1:])
    return np.concatenate((transformed_expi_naive(x[nser]), transformed_expi_series(x[ser]))) 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:16,代碼來源:math_functions.py

示例15: expm1d

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import all [as 別名]
def expm1d(x, eps=1e-6):
    x = np.array(x)
    abs_x = np.abs(x)
    if x.shape:
        # FIXME: don't require abs_x to be increasing
        assert np.all(abs_x[1:] >= abs_x[:-1])
        small = abs_x < eps
        big = ~small
        return np.concatenate([expm1d_taylor(x[small]),
                               expm1d_naive(x[big])])
    elif abs_x < eps:
        return expm1d_taylor(x)
    else:
        return expm1d_naive(x) 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:16,代碼來源:math_functions.py


注:本文中的autograd.numpy.all方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。