當前位置: 首頁>>代碼示例>>Python>>正文


Python autograd.grad方法代碼示例

本文整理匯總了Python中autograd.grad方法的典型用法代碼示例。如果您正苦於以下問題:Python autograd.grad方法的具體用法?Python autograd.grad怎麽用?Python autograd.grad使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在autograd的用法示例。


在下文中一共展示了autograd.grad方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _test_gradgrad_array

# 需要導入模塊: import autograd [as 別名]
# 或者: from autograd import grad [as 別名]
def _test_gradgrad_array(func, optimized, *args):
  """Test gradients of functions with NumPy-compatible signatures."""

  def tangent_func():
    func.__globals__['np'] = np
    df = tangent.grad(func, optimized=optimized, verbose=True)
    ddf = tangent.grad(df, optimized=optimized, verbose=True)
    return ddf(*args)

  def reference_func():
    func.__globals__['np'] = ag_np
    return ag_grad(ag_grad(func))(*args)

  def backup_reference_func():
    return utils.numeric_grad(utils.numeric_grad(func))(*args)

  utils.assert_result_matches_reference(
      tangent_func, reference_func, backup_reference_func,
      tolerance=1e-2)  # extra loose bounds for 2nd order grad 
開發者ID:google,項目名稱:tangent,代碼行數:21,代碼來源:test_reverse_over_reverse.py

示例2: test_logistic_regression

# 需要導入模塊: import autograd [as 別名]
# 或者: from autograd import grad [as 別名]
def test_logistic_regression(motion, optimized):
  func = logistic_regression
  w = np.random.randn(3, 5)
  b = np.random.randn(5)
  input_ = np.random.rand(3)
  label = np.zeros(5)
  label[1] = 1

  func.__globals__['np'] = np
  df = tangent.autodiff(
      func,
      wrt=(2, 3),
      motion=motion,
      optimized=optimized,
      verbose=True,
      input_derivative=INPUT_DERIVATIVE.DefaultOne)
  dw, db = df(input_, label, w, b)

  func.__globals__['np'] = ag_np
  ag_dw = ag_grad(func, argnum=2)(input_, label, w, b)
  ag_db = ag_grad(func, argnum=3)(input_, label, w, b)
  assert np.allclose(ag_dw, dw)
  assert np.allclose(ag_db, db) 
開發者ID:google,項目名稱:tangent,代碼行數:25,代碼來源:test_reverse_mode.py

示例3: test_inlining_contextmanager

# 需要導入模塊: import autograd [as 別名]
# 或者: from autograd import grad [as 別名]
def test_inlining_contextmanager(motion, optimized, a):
  func = inlining_contextmanager
  func = tangent.tangent(func)

  func.__globals__['np'] = np
  df = tangent.autodiff(
      func,
      motion=motion,
      optimized=optimized,
      verbose=True,
      input_derivative=INPUT_DERIVATIVE.DefaultOne)
  dx = df(a)

  func.__globals__['np'] = ag_np
  df_ag = ag_grad(func)
  df_ag(a)
  assert np.allclose(dx, 2.9 * a**2) 
開發者ID:google,項目名稱:tangent,代碼行數:19,代碼來源:test_reverse_mode.py

示例4: rearrange_dict_grad

# 需要導入模塊: import autograd [as 別名]
# 或者: from autograd import grad [as 別名]
def rearrange_dict_grad(fun):
    """
    Decorator that allows us to save memory on the forward pass,
    by precomputing the gradient
    """
    @primitive
    def wrapped_fun_helper(xdict, dummy):
        ## ag.value_and_grad() to avoid second forward pass
        ## ag.checkpoint() ensures hessian gets properly checkpointed
        val, grad = ag.checkpoint(ag.value_and_grad(fun))(xdict)
        assert len(val.shape) == 0
        dummy.cache = grad
        return val

    def wrapped_fun_helper_grad(ans, xdict, dummy):
        def grad(g):
            #print("foo")
            return {k:g*v for k,v in dummy.cache.items()}
        return grad
    defvjp(wrapped_fun_helper, wrapped_fun_helper_grad, None)

    @functools.wraps(fun)
    def wrapped_fun(xdict):
        return wrapped_fun_helper(ag.dict(xdict), lambda:None)
    return wrapped_fun 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:27,代碼來源:likelihood.py

示例5: check_gradient

# 需要導入模塊: import autograd [as 別名]
# 或者: from autograd import grad [as 別名]
def check_gradient(f, x):
    print(x, "\n", f(x))

    print("# grad2")
    grad2 = Gradient(f)(x)
    print("# building grad1")
    g = grad(f)
    print("# computing grad1")
    grad1 = g(x)

    print("gradient1\n", grad1, "\ngradient2\n", grad2)
    np.allclose(grad1, grad2)

    # check Hessian vector product
    y = np.random.normal(size=x.shape)
    gdot = lambda u: np.dot(g(u), y)
    hess1, hess2 = grad(gdot)(x), Gradient(gdot)(x)
    print("hess1\n", hess1, "\nhess2\n", hess2)
    np.allclose(hess1, hess2) 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:21,代碼來源:test_autograd.py

示例6: __init__

# 需要導入模塊: import autograd [as 別名]
# 或者: from autograd import grad [as 別名]
def __init__(self, next_state, running_cost, final_cost,
                 umax, state_dim, pred_time=50):
        self.pred_time = pred_time
        self.umax = umax
        self.v = [0.0 for _ in range(pred_time + 1)]
        self.v_x = [np.zeros(state_dim) for _ in range(pred_time + 1)]
        self.v_xx = [np.zeros((state_dim, state_dim)) for _ in range(pred_time + 1)]
        self.f = next_state
        self.lf = final_cost
        self.lf_x = grad(self.lf)
        self.lf_xx = jacobian(self.lf_x)
        self.l_x = grad(running_cost, 0)
        self.l_u = grad(running_cost, 1)
        self.l_xx = jacobian(self.l_x, 0)
        self.l_uu = jacobian(self.l_u, 1)
        self.l_ux = jacobian(self.l_u, 0)
        self.f_x = jacobian(self.f, 0)
        self.f_u = jacobian(self.f, 1)
        self.f_xx = jacobian(self.f_x, 0)
        self.f_uu = jacobian(self.f_u, 1)
        self.f_ux = jacobian(self.f_u, 0) 
開發者ID:neka-nat,項目名稱:ddp-gym,代碼行數:23,代碼來源:ddp_gym.py

示例7: compute_grad

# 需要導入模塊: import autograd [as 別名]
# 或者: from autograd import grad [as 別名]
def compute_grad(objective_fn, x, grad_fn=None):
        r"""Compute gradient of the objective_fn at the point x.

        Args:
            objective_fn (function): the objective function for optimization
            x (array): NumPy array containing the current values of the variables to be updated
            grad_fn (function): Optional gradient function of the
                objective function with respect to the variables ``x``.
                If ``None``, the gradient function is computed automatically.

        Returns:
            array: NumPy array containing the gradient :math:`\nabla f(x^{(t)})`
        """
        if grad_fn is not None:
            g = grad_fn(x)  # just call the supplied grad function
        else:
            # default is autograd
            g = autograd.grad(objective_fn)(x)  # pylint: disable=no-value-for-parameter
        return g 
開發者ID:XanaduAI,項目名稱:pennylane,代碼行數:21,代碼來源:gradient_descent.py

示例8: apply_grad

# 需要導入模塊: import autograd [as 別名]
# 或者: from autograd import grad [as 別名]
def apply_grad(self, grad, x):
        r"""Update the variables x to take a single optimization step. Flattens and unflattens
        the inputs to maintain nested iterables as the parameters of the optimization.

        Args:
            grad (array): The gradient of the objective
                function at point :math:`x^{(t)}`: :math:`\nabla f(x^{(t)})`
            x (array): the current value of the variables :math:`x^{(t)}`

        Returns:
            array: the new values :math:`x^{(t+1)}`
        """

        x_flat = _flatten(x)
        grad_flat = _flatten(grad)

        x_new_flat = [e - self._stepsize * g for g, e in zip(grad_flat, x_flat)]

        return unflatten(x_new_flat, x) 
開發者ID:XanaduAI,項目名稱:pennylane,代碼行數:21,代碼來源:gradient_descent.py

示例9: test_rotation_gradient

# 需要導入模塊: import autograd [as 別名]
# 或者: from autograd import grad [as 別名]
def test_rotation_gradient(self, theta, tol):
        """Tests that the automatic gradient of a phase space rotation is correct."""

        def circuit(y):
            qml.Displacement(alpha, 0., wires=[0])
            qml.Rotation(y, wires=[0])
            return qml.expval(qml.X(0))

        dev = qml.device('default.gaussian', wires=1)
        circuit = to_autograd(QubitQNode(circuit, dev))
        grad_fn = autograd.grad(circuit)

        autograd_val = grad_fn(theta)
        # qfunc evalutes to hbar * alpha * cos(theta)
        manualgrad_val = - hbar * alpha * np.sin(theta)
        assert autograd_val == pytest.approx(manualgrad_val, abs=tol) 
開發者ID:XanaduAI,項目名稱:pennylane,代碼行數:18,代碼來源:test_autograd.py

示例10: test_displacement_gradient

# 需要導入模塊: import autograd [as 別名]
# 或者: from autograd import grad [as 別名]
def test_displacement_gradient(self, mag, theta, tol):
        """Tests that the automatic gradient of a phase space displacement is correct."""

        def circuit(r, phi):
            qml.Displacement(r, phi, wires=[0])
            return qml.expval(qml.X(0))

        dev = qml.device('default.gaussian', wires=1)
        circuit = to_autograd(CVQNode(circuit, dev))
        grad_fn = autograd.grad(circuit)

        #alpha = mag * np.exp(1j * theta)
        autograd_val = grad_fn(mag, theta)
        # qfunc evalutes to hbar * Re(alpha)
        manualgrad_val = hbar * np.cos(theta)
        assert autograd_val == pytest.approx(manualgrad_val, abs=tol) 
開發者ID:XanaduAI,項目名稱:pennylane,代碼行數:18,代碼來源:test_autograd.py

示例11: test_squeeze_gradient

# 需要導入模塊: import autograd [as 別名]
# 或者: from autograd import grad [as 別名]
def test_squeeze_gradient(self, r, tol):
        """Tests that the automatic gradient of a phase space squeezing is correct."""

        def circuit(y):
            qml.Displacement(alpha, 0., wires=[0])
            qml.Squeezing(y, 0., wires=[0])
            return qml.expval(qml.X(0))

        dev = qml.device('default.gaussian', wires=1)
        circuit = to_autograd(CVQNode(circuit, dev))
        grad_fn = autograd.grad(circuit)

        autograd_val = grad_fn(r)
        # qfunc evaluates to -exp(-r) * hbar * Re(alpha)
        manualgrad_val = -np.exp(-r) * hbar * alpha
        assert autograd_val == pytest.approx(manualgrad_val, abs=tol) 
開發者ID:XanaduAI,項目名稱:pennylane,代碼行數:18,代碼來源:test_autograd.py

示例12: test_no_differentiable_parameters

# 需要導入模塊: import autograd [as 別名]
# 或者: from autograd import grad [as 別名]
def test_no_differentiable_parameters(self):
        """If there are no differentiable parameters, the output of the gradient
        function is an empty tuple, and a warning is emitted."""
        dev = qml.device("default.qubit", wires=2)

        @qml.qnode(dev, interface="autograd")
        def circuit(data1):
            qml.templates.AmplitudeEmbedding(data1, wires=[0, 1])
            return qml.expval(qml.PauliZ(0))

        grad_fn = qml.grad(circuit)
        data1 = qml.numpy.array([0, 1, 1, 0], requires_grad=False) / np.sqrt(2)

        with pytest.warns(UserWarning, match="Output seems independent of input"):
            res = grad_fn(data1)

        assert res == tuple() 
開發者ID:XanaduAI,項目名稱:pennylane,代碼行數:19,代碼來源:test_autograd.py

示例13: test_cv_gradients_parameters_inside_array

# 需要導入模塊: import autograd [as 別名]
# 或者: from autograd import grad [as 別名]
def test_cv_gradients_parameters_inside_array(self, gaussian_dev, tol):
        "Tests that free parameters inside an array passed to an Operation yield correct gradients."
        par = [0.4, 1.3]

        def qf(x, y):
            qml.Displacement(0.5, 0, wires=[0])
            qml.Squeezing(x, 0, wires=[0])
            M = np.zeros((5, 5), dtype=object)
            M[1,1] = y
            M[1,2] = 1.0
            M[2,1] = 1.0
            return qml.expval(qml.PolyXP(M, [0, 1]))

        q = qml.QNode(qf, gaussian_dev)
        grad = q.jacobian(par)
        grad_F = q.jacobian(par, method='F')
        grad_A = q.jacobian(par, method="best")
        grad_A2 = q.jacobian(par, method="best", options={"force_order2": True})

        # par[0] can use the 'A' method, par[1] cannot
        assert q.par_to_grad_method == {0:'A', 1:'F'}
        # the different methods agree
        assert grad == pytest.approx(grad_F, abs=tol) 
開發者ID:XanaduAI,項目名稱:pennylane,代碼行數:25,代碼來源:test_quantum_gradients.py

示例14: test_Rot

# 需要導入模塊: import autograd [as 別名]
# 或者: from autograd import grad [as 別名]
def test_Rot(self, qubit_device_1_wire, tol):
        "Tests that the automatic gradient of a arbitrary Euler-angle-parameterized gate is correct."

        @qml.qnode(qubit_device_1_wire)
        def circuit(x,y,z):
            qml.Rot(x,y,z, wires=[0])
            return qml.expval(qml.PauliZ(0))

        grad_fn = autograd.grad(circuit, argnum=[0,1,2])

        eye = np.eye(3)
        for theta in thetas:
            angle_inputs = np.array([theta, theta ** 3, np.sqrt(2) * theta])
            autograd_val = grad_fn(*angle_inputs)
            for idx in range(3):
                onehot_idx = eye[idx]
                param1 = angle_inputs + np.pi / 2 * onehot_idx
                param2 = angle_inputs - np.pi / 2 * onehot_idx
                manualgrad_val = (circuit(*param1) - circuit(*param2)) / 2
                assert autograd_val[idx] == pytest.approx(manualgrad_val, abs=tol) 
開發者ID:XanaduAI,項目名稱:pennylane,代碼行數:22,代碼來源:test_quantum_gradients.py

示例15: test_U2

# 需要導入模塊: import autograd [as 別名]
# 或者: from autograd import grad [as 別名]
def test_U2(self, tol):
        """Tests that the gradient of an arbitrary U2 gate is correct"""
        dev = qml.device("default.qubit", wires=1)

        @qml.qnode(dev)
        def circuit(x, y):
            qml.QubitStateVector(1j*np.array([1, -1])/np.sqrt(2), wires=[0])
            qml.U2(x, y, wires=[0])
            return qml.expval(qml.PauliX(0))

        phi = -0.234
        lam = 0.654

        res = circuit(phi, lam)
        expected = np.sin(lam)*np.sin(phi)
        assert np.allclose(res, expected, atol=tol, rtol=0)

        grad_fn = autograd.grad(circuit, argnum=[0, 1])
        res = grad_fn(phi, lam)
        expected = np.array([
            np.sin(lam)*np.cos(phi),
            np.cos(lam)*np.sin(phi)
        ])
        assert np.allclose(res, expected, atol=tol, rtol=0) 
開發者ID:XanaduAI,項目名稱:pennylane,代碼行數:26,代碼來源:test_quantum_gradients.py


注:本文中的autograd.grad方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。