本文整理匯總了Python中astropy.units.TeV方法的典型用法代碼示例。如果您正苦於以下問題:Python units.TeV方法的具體用法?Python units.TeV怎麽用?Python units.TeV使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類astropy.units
的用法示例。
在下文中一共展示了units.TeV方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: guess_shower_depth
# 需要導入模塊: from astropy import units [as 別名]
# 或者: from astropy.units import TeV [as 別名]
def guess_shower_depth(energy):
"""
Simple estimation of depth of shower max based on the expected gamma-ray elongation
rate.
Parameters
----------
energy: float
Energy of the shower in TeV
Returns
-------
float: Expected depth of shower maximum
"""
x_max_exp = 300 + 93 * np.log10(energy)
return x_max_exp
示例2: predict_time
# 需要導入模塊: from astropy import units [as 別名]
# 或者: from astropy.units import TeV [as 別名]
def predict_time(self, tel_type, energy, impact, x_max):
"""Creates predicted image for the specified pixels, interpolated
from the template library.
Parameters
----------
tel_type: string
Telescope type specifier
energy: float
Event energy (TeV)
impact: float
Impact diance of shower (metres)
x_max: float
Depth of shower maximum (num bins from expectation)
Returns
-------
ndarray: predicted amplitude for all pixels
"""
return self.time_prediction[tel_type](energy, impact, x_max)
示例3: test_write_container
# 需要導入模塊: from astropy import units [as 別名]
# 或者: from astropy.units import TeV [as 別名]
def test_write_container(temp_h5_file):
r0tel = R0CameraContainer()
mc = MCEventContainer()
mc.reset()
r0tel.waveform = np.random.uniform(size=(50, 10))
r0tel.meta["test_attribute"] = 3.14159
r0tel.meta["date"] = "2020-10-10"
with HDF5TableWriter(
temp_h5_file, group_name="R0", filters=tables.Filters(complevel=7)
) as writer:
writer.exclude("tel_002", ".*samples") # test exclusion of columns
for ii in range(100):
r0tel.waveform[:] = np.random.uniform(size=(50, 10))
mc.energy = 10 ** np.random.uniform(1, 2) * u.TeV
mc.core_x = np.random.uniform(-1, 1) * u.m
mc.core_y = np.random.uniform(-1, 1) * u.m
writer.write("tel_001", r0tel)
writer.write("tel_002", r0tel) # write a second table too
writer.write("MC", mc)
示例4: __init__
# 需要導入模塊: from astropy import units [as 別名]
# 或者: from astropy.units import TeV [as 別名]
def __init__(
self, regressor=RandomForestRegressor, cam_id_list="cam", unit=u.TeV, **kwargs
):
super().__init__(model=regressor, cam_id_list=cam_id_list, unit=unit, **kwargs)
示例5: load
# 需要導入模塊: from astropy import units [as 別名]
# 或者: from astropy.units import TeV [as 別名]
def load(cls, path, cam_id_list, unit=u.TeV):
"""this is only here to overwrite the unit argument with an astropy
quantity
Parameters
----------
path : string
the path where the pre-trained, pickled regressors are
stored `path` is assumed to contain a `{cam_id}` keyword
to be replaced by each camera identifier in `cam_id_list`
(or at least a naked `{}`).
cam_id_list : list
list of camera identifiers like telescope ID or camera ID
and the assumed distinguishing feature in the filenames of
the various pickled regressors.
unit : astropy.Quantity
scikit-learn regressor do not work with units. so append
this one to the predictions. assuming that the models
where trained with consistent units. (default: u.TeV)
Returns
-------
EnergyRegressor:
a ready-to-use instance of this class to predict any
quantity you have trained for
"""
return super().load(path, cam_id_list, unit)
示例6: image_prediction
# 需要導入模塊: from astropy import units [as 別名]
# 或者: from astropy.units import TeV [as 別名]
def image_prediction(self, tel_type, energy, impact, x_max, pix_x, pix_y):
"""Creates predicted image for the specified pixels, interpolated
from the template library.
Parameters
----------
tel_type: string
Telescope type specifier
energy: float
Event energy (TeV)
impact: float
Impact diance of shower (metres)
x_max: float
Depth of shower maximum (num bins from expectation)
pix_x: ndarray
X coordinate of pixels
pix_y: ndarray
Y coordinate of pixels
Returns
-------
ndarray: predicted amplitude for all pixels
"""
return self.prediction[tel_type](energy, impact, x_max, pix_x, pix_y)
示例7: test_showermaxestimator
# 需要導入模塊: from astropy import units [as 別名]
# 或者: from astropy.units import TeV [as 別名]
def test_showermaxestimator(en=5 * u.TeV, h_first_int=10 * u.km, az=70 * u.deg):
estim = ShowerMaxEstimator(atmosphere_profile_name="paranal")
h_max = estim.find_shower_max_height(en, h_first_int, az)
assert h_max.unit.is_equivalent(u.m), "return value has not proper unit"
return h_max
示例8: test_prepare_model
# 需要導入模塊: from astropy import units [as 別名]
# 或者: from astropy.units import TeV [as 別名]
def test_prepare_model():
cam_id_list = ["FlashCam", "ASTRICam"]
feature_list = {
"FlashCam": [[1, 10], [2, 20], [3, 30], [0.9, 9],],
"ASTRICam": [[10, 1], [20, 2], [30, 3], [9, 0.9],],
}
target_list = {
"FlashCam": np.array([1, 2, 3, 0.9]) * u.TeV,
"ASTRICam": np.array([1, 2, 3, 0.9]) * u.TeV,
}
reg = EnergyRegressor(cam_id_list=cam_id_list, n_estimators=10)
reg.fit(feature_list, target_list)
return reg, cam_id_list
示例9: _parse_mc_header
# 需要導入模塊: from astropy import units [as 別名]
# 或者: from astropy.units import TeV [as 別名]
def _parse_mc_header(self):
mc_run_head = self.file_.mc_run_headers[-1]
return MCHeaderContainer(
corsika_version=mc_run_head["shower_prog_vers"],
simtel_version=mc_run_head["detector_prog_vers"],
energy_range_min=mc_run_head["E_range"][0] * u.TeV,
energy_range_max=mc_run_head["E_range"][1] * u.TeV,
prod_site_B_total=mc_run_head["B_total"] * u.uT,
prod_site_B_declination=Angle(mc_run_head["B_declination"], u.rad,),
prod_site_B_inclination=Angle(mc_run_head["B_inclination"], u.rad,),
prod_site_alt=mc_run_head["obsheight"] * u.m,
spectral_index=mc_run_head["spectral_index"],
shower_prog_start=mc_run_head["shower_prog_start"],
shower_prog_id=mc_run_head["shower_prog_id"],
detector_prog_start=mc_run_head["detector_prog_start"],
detector_prog_id=mc_run_head["detector_prog_id"],
num_showers=mc_run_head["n_showers"],
shower_reuse=mc_run_head["n_use"],
max_alt=mc_run_head["alt_range"][1] * u.rad,
min_alt=mc_run_head["alt_range"][0] * u.rad,
max_az=mc_run_head["az_range"][1] * u.rad,
min_az=mc_run_head["az_range"][0] * u.rad,
diffuse=mc_run_head["diffuse"],
max_viewcone_radius=mc_run_head["viewcone"][1] * u.deg,
min_viewcone_radius=mc_run_head["viewcone"][0] * u.deg,
max_scatter_range=mc_run_head["core_range"][1] * u.m,
min_scatter_range=mc_run_head["core_range"][0] * u.m,
core_pos_mode=mc_run_head["core_pos_mode"],
injection_height=mc_run_head["injection_height"] * u.m,
atmosphere=mc_run_head["atmosphere"],
corsika_iact_options=mc_run_head["corsika_iact_options"],
corsika_low_E_model=mc_run_head["corsika_low_E_model"],
corsika_high_E_model=mc_run_head["corsika_high_E_model"],
corsika_bunchsize=mc_run_head["corsika_bunchsize"],
corsika_wlen_min=mc_run_head["corsika_wlen_min"] * u.nm,
corsika_wlen_max=mc_run_head["corsika_wlen_max"] * u.nm,
corsika_low_E_detail=mc_run_head["corsika_low_E_detail"],
corsika_high_E_detail=mc_run_head["corsika_high_E_detail"],
run_array_direction=Angle(self.file_.header["direction"] * u.rad),
)
示例10: test_additional_meta_data_from_mc_header
# 需要導入模塊: from astropy import units [as 別名]
# 或者: from astropy.units import TeV [as 別名]
def test_additional_meta_data_from_mc_header():
with SimTelEventSource(input_url=gamma_test_large_path) as reader:
data = next(iter(reader))
# for expectation values
from astropy import units as u
from astropy.coordinates import Angle
assert data.mcheader.corsika_version == 6990
assert data.mcheader.spectral_index == -2.0
assert data.mcheader.shower_reuse == 20
assert data.mcheader.core_pos_mode == 1
assert data.mcheader.diffuse == 1
assert data.mcheader.atmosphere == 26
# value read by hand from input card
name_expectation = {
"energy_range_min": u.Quantity(3.0e-03, u.TeV),
"energy_range_max": u.Quantity(3.3e02, u.TeV),
"prod_site_B_total": u.Quantity(23.11772346496582, u.uT),
"prod_site_B_declination": Angle(0.0 * u.rad),
"prod_site_B_inclination": Angle(-0.39641156792640686 * u.rad),
"prod_site_alt": 2150.0 * u.m,
"max_scatter_range": 3000.0 * u.m,
"min_az": 0.0 * u.rad,
"min_alt": 1.2217305 * u.rad,
"max_viewcone_radius": 10.0 * u.deg,
"corsika_wlen_min": 240 * u.nm,
}
for name, expectation in name_expectation.items():
value = getattr(data.mcheader, name)
assert value.unit == expectation.unit
assert np.isclose(
value.to_value(expectation.unit), expectation.to_value(expectation.unit)
)
示例11: evaluate
# 需要導入模塊: from astropy import units [as 別名]
# 或者: from astropy.units import TeV [as 別名]
def evaluate(self, x, redshift):
if isinstance(x, astropy_units.Quantity):
# ebltable expects TeV
eTeV = x.to(astropy_units.TeV).value
return np.exp(-self._tau.opt_depth(redshift.value, eTeV)) * astropy_units.dimensionless_unscaled
else:
# otherwise it's in keV
eTeV = old_div(x, 1e9)
return np.exp(-self._tau.opt_depth(redshift, eTeV))
示例12: test_fractional_powers
# 需要導入模塊: from astropy import units [as 別名]
# 或者: from astropy.units import TeV [as 別名]
def test_fractional_powers():
"""See #2069"""
m = 1e9 * u.Msun
tH = 1. / (70. * u.km / u.s / u.Mpc)
vc = 200 * u.km/u.s
x = (c.G ** 2 * m ** 2 * tH.cgs) ** Fraction(1, 3) / vc
v1 = x.to('pc')
x = (c.G ** 2 * m ** 2 * tH) ** Fraction(1, 3) / vc
v2 = x.to('pc')
x = (c.G ** 2 * m ** 2 * tH.cgs) ** (1.0 / 3.0) / vc
v3 = x.to('pc')
x = (c.G ** 2 * m ** 2 * tH) ** (1.0 / 3.0) / vc
v4 = x.to('pc')
assert_allclose(v1, v2)
assert_allclose(v2, v3)
assert_allclose(v3, v4)
x = u.m ** (1.0 / 101.0)
assert isinstance(x.powers[0], float)
x = u.m ** (3.0 / 7.0)
assert isinstance(x.powers[0], Fraction)
assert x.powers[0].numerator == 3
assert x.powers[0].denominator == 7
x = u.cm ** Fraction(1, 2) * u.cm ** Fraction(2, 3)
assert isinstance(x.powers[0], Fraction)
assert x.powers[0] == Fraction(7, 6)
# Regression test for #9258.
x = (u.TeV ** (-2.2)) ** (1/-2.2)
assert isinstance(x.powers[0], Fraction)
assert x.powers[0] == Fraction(1, 1)
示例13: test_image_prediction
# 需要導入模塊: from astropy import units [as 別名]
# 或者: from astropy.units import TeV [as 別名]
def test_image_prediction(self):
pixel_x = np.array([0]) * u.deg
pixel_y = np.array([0]) * u.deg
image = np.array([1])
pixel_area = np.array([1]) * u.deg * u.deg
self.impact_reco.set_event_properties(
{1: image},
{1: pixel_x},
{1: pixel_y},
{1: pixel_area},
{1: "CHEC"},
{1: 0 * u.m},
{1: 0 * u.m},
array_direction=[0 * u.deg, 0 * u.deg],
)
"""First check image prediction by directly accessing the function"""
pred = self.impact_reco.image_prediction(
"CHEC",
zenith=0,
azimuth=0,
energy=1,
impact=50,
x_max=0,
pix_x=pixel_x,
pix_y=pixel_y,
)
assert np.sum(pred) != 0
"""Then check helper function gives the same answer"""
shower = ReconstructedShowerContainer()
shower.is_valid = True
shower.alt = 0 * u.deg
shower.az = 0 * u.deg
shower.core_x = 0 * u.m
shower.core_y = 100 * u.m
shower.h_max = 300 + 93 * np.log10(1)
energy = ReconstructedEnergyContainer()
energy.is_valid = True
energy.energy = 1 * u.TeV
pred2 = self.impact_reco.get_prediction(
1, shower_reco=shower, energy_reco=energy
)
print(pred, pred2)
assert pred.all() == pred2.all()
示例14: _write_simulation_histograms
# 需要導入模塊: from astropy import units [as 別名]
# 或者: from astropy.units import TeV [as 別名]
def _write_simulation_histograms(self, writer: HDF5TableWriter):
""" Write the distribution of thrown showers
Notes
-----
- this only runs if this is a simulation file. The current implementation is
a bit of a hack and implies we should improve SimTelEventSource to read this
info.
- Currently the histograms are at the end of the simtel file, so if max_events
is set to non-zero, the end of the file may not be read, and this no
histograms will be found.
"""
self.log.debug("Writing simulation histograms")
if not isinstance(self.event_source, SimTelEventSource):
return
def fill_from_simtel(
obs_id, eventio_hist, container: SimulatedShowerDistribution
):
""" fill from a SimTel Histogram entry"""
container.obs_id = obs_id
container.hist_id = eventio_hist["id"]
container.num_entries = eventio_hist["entries"]
xbins = np.linspace(
eventio_hist["lower_x"],
eventio_hist["upper_x"],
eventio_hist["n_bins_x"] + 1,
)
ybins = np.linspace(
eventio_hist["lower_y"],
eventio_hist["upper_y"],
eventio_hist["n_bins_y"] + 1,
)
container.bins_core_dist = xbins * u.m
container.bins_energy = 10 ** ybins * u.TeV
container.histogram = eventio_hist["data"]
container.meta["hist_title"] = eventio_hist["title"]
container.meta["x_label"] = "Log10 E (TeV)"
container.meta["y_label"] = "3D Core Distance (m)"
hists = self.event_source.file_.histograms
if hists is not None:
hist_container = SimulatedShowerDistribution()
hist_container.prefix = ""
for hist in hists:
if hist["id"] == 6:
fill_from_simtel(self.event_source.obs_id, hist, hist_container)
writer.write(
table_name="simulation/service/shower_distribution",
containers=hist_container,
)
示例15: test_one_free_parameter_input_output
# 需要導入模塊: from astropy import units [as 別名]
# 或者: from astropy.units import TeV [as 別名]
def test_one_free_parameter_input_output():
fluxUnit = 1.0 / (u.TeV * u.cm ** 2 * u.s)
temp_file = "__test_mle.fits"
spectrum = Powerlaw()
source = PointSource("tst", ra=100, dec=20, spectral_shape=spectrum)
model = Model(source)
spectrum.piv = 7 * u.TeV
spectrum.index = -2.3
spectrum.K = 1e-15 * fluxUnit
spectrum.piv.fix = True
# two free parameters (one with units)
spectrum.index.fix = False
spectrum.K.fix = False
cov_matrix = np.diag([0.001] * 2)
ar = MLEResults(model, cov_matrix, {})
ar.write_to(temp_file, overwrite=True)
ar_reloaded = load_analysis_results(temp_file)
os.remove(temp_file)
_results_are_same(ar, ar_reloaded)
# one free parameter with units
spectrum.index.fix = True
spectrum.K.fix = False
cov_matrix = np.diag([0.001] * 1)
ar = MLEResults(model, cov_matrix, {})
ar.write_to(temp_file, overwrite=True)
ar_reloaded = load_analysis_results(temp_file)
os.remove(temp_file)
_results_are_same(ar, ar_reloaded)
# one free parameter without units
spectrum.index.fix = False
spectrum.K.fix = True
cov_matrix = np.diag([0.001] * 1)
ar = MLEResults(model, cov_matrix, {})
ar.write_to(temp_file, overwrite=True)
ar_reloaded = load_analysis_results(temp_file)
os.remove(temp_file)
_results_are_same(ar, ar_reloaded)