當前位置: 首頁>>代碼示例>>Python>>正文


Python stats.sigma_clip方法代碼示例

本文整理匯總了Python中astropy.stats.sigma_clip方法的典型用法代碼示例。如果您正苦於以下問題:Python stats.sigma_clip方法的具體用法?Python stats.sigma_clip怎麽用?Python stats.sigma_clip使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在astropy.stats的用法示例。


在下文中一共展示了stats.sigma_clip方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_lightcurve_y_limits

# 需要導入模塊: from astropy import stats [as 別名]
# 或者: from astropy.stats import sigma_clip [as 別名]
def get_lightcurve_y_limits(lc_source):
    """Compute sensible defaults for the Y axis limits of the lightcurve plot.

    Parameters
    ----------
    lc_source : bokeh.plotting.ColumnDataSource
        The lightcurve being shown.

    Returns
    -------
    ymin, ymax : float, float
        Flux min and max limits.
    """
    with warnings.catch_warnings():  # Ignore warnings due to NaNs
        warnings.simplefilter("ignore", AstropyUserWarning)
        flux = sigma_clip(lc_source.data['flux'], sigma=5, masked=False)
    low, high = np.nanpercentile(flux, (1, 99))
    margin = 0.10 * (high - low)
    return low - margin, high + margin 
開發者ID:KeplerGO,項目名稱:lightkurve,代碼行數:21,代碼來源:interact.py

示例2: _cbrange_sigma_clip

# 需要導入模塊: from astropy import stats [as 別名]
# 或者: from astropy.stats import sigma_clip [as 別名]
def _cbrange_sigma_clip(image, sigma):
    """Sigma clip colorbar range.

    Parameters:
        image (masked array):
            Image.
        sigma (float):
            Sigma to clip.

    Returns:
        list: Colorbar range.
    """
    try:
        imclip = sigma_clip(image.data[~image.mask], sigma=sigma)
    except TypeError:
        imclip = sigma_clip(image.data[~image.mask], sig=sigma)

    try:
        cbrange = [imclip.min(), imclip.max()]
    except ValueError:
        cbrange = [image.min(), image.max()]

    return cbrange 
開發者ID:sdss,項目名稱:marvin,代碼行數:25,代碼來源:colorbar.py

示例3: test_with_fitters_and_sigma_clip

# 需要導入模塊: from astropy import stats [as 別名]
# 或者: from astropy.stats import sigma_clip [as 別名]
def test_with_fitters_and_sigma_clip(self):
        import scipy.stats as stats

        np.random.seed(0)
        c = stats.bernoulli.rvs(0.25, size=self.x.shape)
        self.y += (np.random.normal(0., 0.2, self.x.shape) +
                   c*np.random.normal(3.0, 5.0, self.x.shape))

        g_init = models.Gaussian1D(amplitude=1., mean=0, stddev=1.)
        # test with Levenberg-Marquardt Least Squares fitter
        fit = FittingWithOutlierRemoval(LevMarLSQFitter(), sigma_clip,
                                        niter=3, sigma=3.0)
        fitted_model, _ = fit(g_init, self.x, self.y)
        assert_allclose(fitted_model.parameters, self.model_params, rtol=1e-1)
        # test with Sequential Least Squares Programming fitter
        fit = FittingWithOutlierRemoval(SLSQPLSQFitter(), sigma_clip,
                                        niter=3, sigma=3.0)
        fitted_model, _ = fit(g_init, self.x, self.y)
        assert_allclose(fitted_model.parameters, self.model_params, rtol=1e-1)
        # test with Simplex LSQ fitter
        fit = FittingWithOutlierRemoval(SimplexLSQFitter(), sigma_clip,
                                        niter=3, sigma=3.0)
        fitted_model, _ = fit(g_init, self.x, self.y)
        assert_allclose(fitted_model.parameters, self.model_params, atol=1e-1) 
開發者ID:holzschu,項目名稱:Carnets,代碼行數:26,代碼來源:test_fitters.py

示例4: test_1d_set_fitting_with_outlier_removal

# 需要導入模塊: from astropy import stats [as 別名]
# 或者: from astropy.stats import sigma_clip [as 別名]
def test_1d_set_fitting_with_outlier_removal():
    """Test model set fitting with outlier removal (issue #6819)"""

    poly_set = models.Polynomial1D(2, n_models=2)

    fitter = FittingWithOutlierRemoval(LinearLSQFitter(),
                                       sigma_clip, sigma=2.5, niter=3,
                                       cenfunc=np.ma.mean, stdfunc=np.ma.std)

    x = np.arange(10)
    y = np.array([2.5*x - 4, 2*x*x + x + 10])
    y[1, 5] = -1000  # outlier

    poly_set, filt_y = fitter(poly_set, x, y)

    assert_allclose(poly_set.c0, [-4., 10.], atol=1e-14)
    assert_allclose(poly_set.c1, [2.5, 1.], atol=1e-14)
    assert_allclose(poly_set.c2, [0., 2.], atol=1e-14) 
開發者ID:holzschu,項目名稱:Carnets,代碼行數:20,代碼來源:test_fitters.py

示例5: test_2d_set_axis_2_fitting_with_outlier_removal

# 需要導入模塊: from astropy import stats [as 別名]
# 或者: from astropy.stats import sigma_clip [as 別名]
def test_2d_set_axis_2_fitting_with_outlier_removal():
    """Test fitting 2D model set (axis 2) with outlier removal (issue #6819)"""

    poly_set = models.Polynomial2D(1, n_models=2, model_set_axis=2)

    fitter = FittingWithOutlierRemoval(LinearLSQFitter(),
                                       sigma_clip, sigma=2.5, niter=3,
                                       cenfunc=np.ma.mean, stdfunc=np.ma.std)

    y, x = np.mgrid[0:5, 0:5]
    z = np.rollaxis(np.array([x+y, 1-0.1*x+0.2*y]), 0, 3)
    z[3, 3:5, 0] = 100.   # outliers

    poly_set, filt_z = fitter(poly_set, x, y, z)
    assert_allclose(poly_set.c0_0, [[[0., 1.]]], atol=1e-14)
    assert_allclose(poly_set.c1_0, [[[1., -0.1]]], atol=1e-14)
    assert_allclose(poly_set.c0_1, [[[1., 0.2]]], atol=1e-14) 
開發者ID:holzschu,項目名稱:Carnets,代碼行數:19,代碼來源:test_fitters.py

示例6: bkg_subtraction

# 需要導入模塊: from astropy import stats [as 別名]
# 或者: from astropy.stats import sigma_clip [as 別名]
def bkg_subtraction(self, scope="tpf", sigma=2.5):
        """Subtracts background flux from target pixel file.

        Parameters
        ----------
        scope : string, "tpf" or "postcard"
            If `tpf`, will use data from the target pixel file only to estimate and remove the background.
            If `postcard`, will use data from the entire postcard region to estimate and remove the background.
        sigma : float
            The standard deviation cut used to determine which pixels are representative of the background in each cadence.
        """
        time = self.time

        if self.source_info.tc == True:
            flux = self.bkg_tpf
        else:
            flux = self.tpf
        
        tpf_flux_bkg = []
        
        sigma_clip = SigmaClip(sigma=sigma)
        bkg = MMMBackground(sigma_clip=sigma_clip)
        
        for i in range(len(time)):
            bkg_value = bkg.calc_background(flux[i])
            tpf_flux_bkg.append(bkg_value)

        if self.source_info.tc == True:
            self.tpf_flux_bkg = np.array(tpf_flux_bkg)
        else:
            return np.array(tpf_flux_bkg) 
開發者ID:afeinstein20,項目名稱:eleanor,代碼行數:33,代碼來源:targetdata.py

示例7: test_1d_without_weights_with_sigma_clip

# 需要導入模塊: from astropy import stats [as 別名]
# 或者: from astropy.stats import sigma_clip [as 別名]
def test_1d_without_weights_with_sigma_clip(self):
        model = models.Polynomial1D(0)
        fitter = FittingWithOutlierRemoval(LinearLSQFitter(), sigma_clip,
                                           niter=3, sigma=3.)
        fit, mask = fitter(model, self.x1d, self.z1d)
        assert((~mask).sum() == self.z1d.size - 2)
        assert(mask[0] and mask[1])
        assert_allclose(fit.parameters[0], 0.0, atol=10**(-2))  # with removed outliers mean is 0.0 
開發者ID:holzschu,項目名稱:Carnets,代碼行數:10,代碼來源:test_fitters.py

示例8: test_1d_set_with_common_weights_with_sigma_clip

# 需要導入模塊: from astropy import stats [as 別名]
# 或者: from astropy.stats import sigma_clip [as 別名]
def test_1d_set_with_common_weights_with_sigma_clip(self):
        """added for #6819 (1D model set with weights in common)"""
        model = models.Polynomial1D(0, n_models=2)
        fitter = FittingWithOutlierRemoval(LinearLSQFitter(), sigma_clip,
                                           niter=3, sigma=3.)
        z1d = np.array([self.z1d, self.z1d])

        fit, filtered = fitter(model, self.x1d, z1d, weights=self.weights1d)
        assert_allclose(fit.parameters, [0.8, 0.8], atol=1e-14) 
開發者ID:holzschu,項目名稱:Carnets,代碼行數:11,代碼來源:test_fitters.py

示例9: test_2d_without_weights_with_sigma_clip

# 需要導入模塊: from astropy import stats [as 別名]
# 或者: from astropy.stats import sigma_clip [as 別名]
def test_2d_without_weights_with_sigma_clip(self):
        model = models.Polynomial2D(0)
        fitter = FittingWithOutlierRemoval(LinearLSQFitter(), sigma_clip,
                                           niter=3, sigma=3.)
        fit, mask = fitter(model, self.x, self.y, self.z)
        assert((~mask).sum() == self.z.size - 2)
        assert(mask[0, 0] and mask[0, 1])
        assert_allclose(fit.parameters[0], 0.0, atol=10**(-2)) 
開發者ID:holzschu,項目名稱:Carnets,代碼行數:10,代碼來源:test_fitters.py

示例10: test_2d_with_weights_with_sigma_clip

# 需要導入模塊: from astropy import stats [as 別名]
# 或者: from astropy.stats import sigma_clip [as 別名]
def test_2d_with_weights_with_sigma_clip(self):
        """smoke test for #7020 - fails without fitting.py patch because weights does not propagate"""
        model = models.Polynomial2D(0)
        fitter = FittingWithOutlierRemoval(LevMarLSQFitter(), sigma_clip,
                                           niter=3, sigma=3.)
        with pytest.warns(AstropyUserWarning,
                          match=r'Model is linear in parameters'):
            fit, filtered = fitter(model, self.x, self.y, self.z,
                                   weights=self.weights)
        assert(fit.parameters[0] > 10**(-2))  # weights pulled it > 0
        assert(fit.parameters[0] < 1.0)       # outliers didn't pull it out of [-1:1] because they had been removed 
開發者ID:holzschu,項目名稱:Carnets,代碼行數:13,代碼來源:test_fitters.py

示例11: _set_cbrange

# 需要導入模塊: from astropy import stats [as 別名]
# 或者: from astropy.stats import sigma_clip [as 別名]
def _set_cbrange(image, cb_kws):
    """Set colorbar range.

    Parameters:
        image (masked array):
            Image.
        cb_kws (dict):
            Colorbar kwargs.

    Returns:
        dict: Colorbar kwargs.
    """
    if cb_kws.get('sigma_clip'):
        cbr = _cbrange_sigma_clip(image, cb_kws['sigma_clip'])
    elif cb_kws.get('percentile_clip'):
        try:
            cbr = _cbrange_percentile_clip(image, *cb_kws['percentile_clip'])
        except IndexError:
            cbr = [0.1, 1]
    else:
        cbr = [image.min(), image.max()]

    if cb_kws.get('cbrange') is not None:
        cbr = _cbrange_user_defined(cbr, cb_kws['cbrange'])

    if cb_kws.get('symmetric', False):
        cb_max = np.max(np.abs(cbr))
        cbr = [-cb_max, cb_max]

    cbr, cb_kws['ticks'] = _set_cbticks(cbr, cb_kws)

    if cb_kws.get('log_cb', False):
        try:
            im_min = np.min(image[image > 0.])
        except ValueError:
            im_min = 0.1
        if im_min is np.ma.masked:
            im_min = 0.1
        cbr[0] = np.max((cbr[0], im_min))

    cb_kws['cbrange'] = cbr

    return cb_kws 
開發者ID:sdss,項目名稱:marvin,代碼行數:45,代碼來源:colorbar.py


注:本文中的astropy.stats.sigma_clip方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。