本文整理匯總了Python中astropy.modeling.fitting.LevMarLSQFitter方法的典型用法代碼示例。如果您正苦於以下問題:Python fitting.LevMarLSQFitter方法的具體用法?Python fitting.LevMarLSQFitter怎麽用?Python fitting.LevMarLSQFitter使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類astropy.modeling.fitting
的用法示例。
在下文中一共展示了fitting.LevMarLSQFitter方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_fitting_with_initial_values
# 需要導入模塊: from astropy.modeling import fitting [as 別名]
# 或者: from astropy.modeling.fitting import LevMarLSQFitter [as 別名]
def test_fitting_with_initial_values():
x, y = _fake_gaussian_data()
# Fit the data using a Gaussian with units
g_init = models.Gaussian1D(amplitude=1. * u.mJy,
mean=3 * u.cm,
stddev=2 * u.mm)
fit_g = fitting.LevMarLSQFitter()
g = fit_g(g_init, x, y)
# TODO: update actual numerical results once implemented, but these should
# be close to the values below.
assert_quantity_allclose(g.amplitude, 3 * u.Jy, rtol=0.05)
assert_quantity_allclose(g.mean, 1.3 * u.m, rtol=0.05)
assert_quantity_allclose(g.stddev, 0.8 * u.m, rtol=0.05)
示例2: fit_gauss
# 需要導入模塊: from astropy.modeling import fitting [as 別名]
# 或者: from astropy.modeling.fitting import LevMarLSQFitter [as 別名]
def fit_gauss(sci):
from astropy.modeling import models, fitting
sh = sci.shape
gau = models.Gaussian2D(amplitude=sci.max(), x_mean=sh[0]/2, y_mean=sh[0]/2., x_stddev=None, y_stddev=None, theta=None, cov_matrix=None)
lm = fitting.LevMarLSQFitter()
yp, xp = np.indices(sh)
fit = lm(gau, xp, yp, sci)
q = (fit.x_stddev/fit.y_stddev)**2
theta = fit.theta.value
if q > 1:
q = 1./q
theta += np.pi/2.
return fit, q, theta
示例3: measure_fwhm
# 需要導入模塊: from astropy.modeling import fitting [as 別名]
# 或者: from astropy.modeling.fitting import LevMarLSQFitter [as 別名]
def measure_fwhm(array):
"""Fit a Gaussian2D model to a PSF and return the FWHM
Parameters
----------
array : numpy.ndarray
Array containing PSF
Returns
-------
x_fwhm : float
FWHM in x direction in units of pixels
y_fwhm : float
FWHM in y direction in units of pixels
"""
yp, xp = array.shape
y, x, = np.mgrid[:yp, :xp]
p_init = models.Gaussian2D()
fit_p = fitting.LevMarLSQFitter()
fitted_psf = fit_p(p_init, x, y, array)
return fitted_psf.x_fwhm, fitted_psf.y_fwhm
示例4: test_no_constraints
# 需要導入模塊: from astropy.modeling import fitting [as 別名]
# 或者: from astropy.modeling.fitting import LevMarLSQFitter [as 別名]
def test_no_constraints(self):
g1 = models.Gaussian1D(9.9, 14.5, stddev=.3)
def func(p, x):
return p[0] * np.exp(-0.5 / p[2] ** 2 * (x - p[1]) ** 2)
def errf(p, x, y):
return func(p, x) - y
p0 = [9.9, 14.5, 0.3]
y = g1(self.x)
n = np.random.randn(100)
ny = y + n
fitpar, s = optimize.leastsq(errf, p0, args=(self.x, ny))
fitter = fitting.LevMarLSQFitter()
model = fitter(g1, self.x, ny)
assert_allclose(model.parameters, fitpar, rtol=5 * 10 ** (-3))
示例5: test_bounds_lsq
# 需要導入模塊: from astropy.modeling import fitting [as 別名]
# 或者: from astropy.modeling.fitting import LevMarLSQFitter [as 別名]
def test_bounds_lsq(self):
guess_slope = 1.1
guess_intercept = 0.0
bounds = {'slope': (-1.5, 5.0), 'intercept': (-1.0, 1.0)}
line_model = models.Linear1D(guess_slope, guess_intercept,
bounds=bounds)
fitter = fitting.LevMarLSQFitter()
with pytest.warns(AstropyUserWarning,
match=r'Model is linear in parameters'):
model = fitter(line_model, self.x, self.y)
slope = model.slope.value
intercept = model.intercept.value
assert slope + 10 ** -5 >= bounds['slope'][0]
assert slope - 10 ** -5 <= bounds['slope'][1]
assert intercept + 10 ** -5 >= bounds['intercept'][0]
assert intercept - 10 ** -5 <= bounds['intercept'][1]
示例6: test_bounds_gauss2d_lsq
# 需要導入模塊: from astropy.modeling import fitting [as 別名]
# 或者: from astropy.modeling.fitting import LevMarLSQFitter [as 別名]
def test_bounds_gauss2d_lsq(self):
X, Y = np.meshgrid(np.arange(11), np.arange(11))
bounds = {"x_mean": [0., 11.],
"y_mean": [0., 11.],
"x_stddev": [1., 4],
"y_stddev": [1., 4]}
gauss = models.Gaussian2D(amplitude=10., x_mean=5., y_mean=5.,
x_stddev=4., y_stddev=4., theta=0.5,
bounds=bounds)
gauss_fit = fitting.LevMarLSQFitter()
with pytest.warns(AstropyUserWarning,
match='The fit may be unsuccessful'):
model = gauss_fit(gauss, X, Y, self.data)
x_mean = model.x_mean.value
y_mean = model.y_mean.value
x_stddev = model.x_stddev.value
y_stddev = model.y_stddev.value
assert x_mean + 10 ** -5 >= bounds['x_mean'][0]
assert x_mean - 10 ** -5 <= bounds['x_mean'][1]
assert y_mean + 10 ** -5 >= bounds['y_mean'][0]
assert y_mean - 10 ** -5 <= bounds['y_mean'][1]
assert x_stddev + 10 ** -5 >= bounds['x_stddev'][0]
assert x_stddev - 10 ** -5 <= bounds['x_stddev'][1]
assert y_stddev + 10 ** -5 >= bounds['y_stddev'][0]
assert y_stddev - 10 ** -5 <= bounds['y_stddev'][1]
示例7: test_fitting_missing_model_units
# 需要導入模塊: from astropy.modeling import fitting [as 別名]
# 或者: from astropy.modeling.fitting import LevMarLSQFitter [as 別名]
def test_fitting_missing_model_units():
"""
Proceed if the data has units but the model doesn't
"""
x, y = _fake_gaussian_data()
g_init = models.Gaussian1D(amplitude=1., mean=3, stddev=2)
fit_g = fitting.LevMarLSQFitter()
g = fit_g(g_init, x, y)
assert_quantity_allclose(g.amplitude, 3 * u.Jy, rtol=0.05)
assert_quantity_allclose(g.mean, 1.3 * u.m, rtol=0.05)
assert_quantity_allclose(g.stddev, 0.8 * u.m, rtol=0.05)
g_init = models.Gaussian1D(amplitude=1., mean=3 * u.m, stddev=2 * u.m)
fit_g = fitting.LevMarLSQFitter()
g = fit_g(g_init, x, y)
assert_quantity_allclose(g.amplitude, 3 * u.Jy, rtol=0.05)
assert_quantity_allclose(g.mean, 1.3 * u.m, rtol=0.05)
assert_quantity_allclose(g.stddev, 0.8 * u.m, rtol=0.05)
示例8: test_compound_without_units
# 需要導入模塊: from astropy.modeling import fitting [as 別名]
# 或者: from astropy.modeling.fitting import LevMarLSQFitter [as 別名]
def test_compound_without_units(model):
x = np.linspace(-5, 5, 10) * u.Angstrom
with NumpyRNGContext(12345):
y = np.random.sample(10)
fitter = fitting.LevMarLSQFitter()
res_fit = fitter(model, x, y * u.Hz)
for param_name in res_fit.param_names:
print(getattr(res_fit, param_name))
assert all([res_fit[i]._has_units for i in range(3)])
z = res_fit(x)
assert isinstance(z, u.Quantity)
res_fit = fitter(model, np.arange(10) * u.Unit('Angstrom'), y)
assert all([res_fit[i]._has_units for i in range(3)])
z = res_fit(x)
assert isinstance(z, np.ndarray)
示例9: test_compound_fitting_with_units
# 需要導入模塊: from astropy.modeling import fitting [as 別名]
# 或者: from astropy.modeling.fitting import LevMarLSQFitter [as 別名]
def test_compound_fitting_with_units():
x = np.linspace(-5, 5, 15) * u.Angstrom
y = np.linspace(-5, 5, 15) * u.Angstrom
fitter = fitting.LevMarLSQFitter()
m = models.Gaussian2D(10*u.Hz,
3*u.Angstrom, 4*u.Angstrom,
1*u.Angstrom, 2*u.Angstrom)
p = models.Planar2D(3*u.Hz/u.Angstrom, 4*u.Hz/u.Angstrom, 1*u.Hz)
model = m + p
z = model(x, y)
res = fitter(model, x, y, z)
assert isinstance(res(x, y), np.ndarray)
assert all([res[i]._has_units for i in range(2)])
model = models.Gaussian2D() + models.Planar2D()
res = fitter(model, x, y, z)
assert isinstance(res(x, y), np.ndarray)
assert all([res[i]._has_units for i in range(2)])
示例10: test_fitting_convolve_models
# 需要導入模塊: from astropy.modeling import fitting [as 別名]
# 或者: from astropy.modeling.fitting import LevMarLSQFitter [as 別名]
def test_fitting_convolve_models(self, mode):
"""
test that a convolve model can be fitted
"""
b1 = models.Box1D()
g1 = models.Gaussian1D()
x = np.linspace(-5, 5, 99)
fake_model = models.Gaussian1D(amplitude=10)
with NumpyRNGContext(123):
fake_data = fake_model(x) + np.random.normal(size=len(x))
init_model = convolve_models(b1, g1, mode=mode, normalize_kernel=False)
fitter = fitting.LevMarLSQFitter()
fitted_model = fitter(init_model, x, fake_data)
me = np.mean(fitted_model(x) - fake_data)
assert_almost_equal(me, 0.0, decimal=2)
示例11: test_FM90_fitting
# 需要導入模塊: from astropy.modeling import fitting [as 別名]
# 或者: from astropy.modeling.fitting import LevMarLSQFitter [as 別名]
def test_FM90_fitting():
# get an observed extinction curve to fit
g03_model = G03_LMCAvg()
x = g03_model.obsdata_x
# convert to E(x-V)/E(B0V)
y = (g03_model.obsdata_axav - 1.0) * g03_model.Rv
# only fit the UV portion (FM90 only valid in UV)
gindxs, = np.where(x > 3.125)
fm90_init = FM90()
fit = LevMarLSQFitter()
g03_fit = fit(fm90_init, x[gindxs], y[gindxs])
fit_vals = [
g03_fit.C1.value,
g03_fit.C2.value,
g03_fit.C3.value,
g03_fit.C4.value,
g03_fit.xo.value,
g03_fit.gamma.value,
]
good_vals = np.array(
[
-0.958016797002,
1.0109751831,
2.96430606652,
0.313137860902,
4.59996300532,
0.99000982258,
]
)
np.testing.assert_allclose(good_vals, fit_vals)
示例12: test_Shift_model_levmar_fit
# 需要導入模塊: from astropy.modeling import fitting [as 別名]
# 或者: from astropy.modeling.fitting import LevMarLSQFitter [as 別名]
def test_Shift_model_levmar_fit():
"""Test fitting Shift model with LevMarLSQFitter (issue #6103)."""
init_model = models.Shift()
x = np.arange(10)
y = x+0.1
fitter = fitting.LevMarLSQFitter()
with pytest.warns(AstropyUserWarning,
match='Model is linear in parameters'):
fitted_model = fitter(init_model, x, y)
assert_allclose(fitted_model.parameters, [0.1], atol=1e-15)
示例13: test_Voigt1D
# 需要導入模塊: from astropy.modeling import fitting [as 別名]
# 或者: from astropy.modeling.fitting import LevMarLSQFitter [as 別名]
def test_Voigt1D():
voi = models.Voigt1D(amplitude_L=-0.5, x_0=1.0, fwhm_L=5.0, fwhm_G=5.0)
xarr = np.linspace(-5.0, 5.0, num=40)
yarr = voi(xarr)
voi_init = models.Voigt1D(amplitude_L=-1.0, x_0=1.0, fwhm_L=5.0, fwhm_G=5.0)
fitter = fitting.LevMarLSQFitter()
voi_fit = fitter(voi_init, xarr, yarr)
assert_allclose(voi_fit.param_sets, voi.param_sets)
示例14: test_KingProjectedAnalytic1D_fit
# 需要導入模塊: from astropy.modeling import fitting [as 別名]
# 或者: from astropy.modeling.fitting import LevMarLSQFitter [as 別名]
def test_KingProjectedAnalytic1D_fit():
km = models.KingProjectedAnalytic1D(amplitude=1, r_core=1, r_tide=2)
xarr = np.linspace(0.1, 2, 10)
yarr = km(xarr)
km_init = models.KingProjectedAnalytic1D(amplitude=1, r_core=1, r_tide=1)
fitter = fitting.LevMarLSQFitter()
km_fit = fitter(km_init, xarr, yarr)
assert_allclose(km_fit.param_sets, km.param_sets)
示例15: test_fit
# 需要導入模塊: from astropy.modeling import fitting [as 別名]
# 或者: from astropy.modeling.fitting import LevMarLSQFitter [as 別名]
def test_fit(self):
fitter = LevMarLSQFitter()
b = BlackBody1D(3000 * u.K)
wav = np.array([0.5, 5, 10]) * u.micron
fnu = np.array([1, 10, 5]) * u.Jy
b_fit = fitter(b, wav, fnu)
assert_quantity_allclose(b_fit.temperature, 2840.7438339457754 * u.K)
assert_quantity_allclose(b_fit.bolometric_flux, 6.821837075583734e-08 * u.erg / u.cm**2 / u.s)