本文整理匯總了Python中astropy.io.fits.Column方法的典型用法代碼示例。如果您正苦於以下問題:Python fits.Column方法的具體用法?Python fits.Column怎麽用?Python fits.Column使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類astropy.io.fits
的用法示例。
在下文中一共展示了fits.Column方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_is_fits_image_file_table_img
# 需要導入模塊: from astropy.io import fits [as 別名]
# 或者: from astropy.io.fits import Column [as 別名]
def test_is_fits_image_file_table_img(self, dp_mock):
with tempfile.TemporaryDirectory() as tmpdir:
with self.settings(MEDIA_ROOT=tmpdir):
img_file = os.path.join(tmpdir, 'img.blah') # file name should be irrelevant
img = fits.PrimaryHDU(np.arange(100))
img.header['EXTNAME'] = 'SCI'
hdul = fits.HDUList([img])
hdul.writeto(img_file)
tabimg_file = os.path.join(tmpdir, 'both.fits')
table = fits.BinTableHDU.from_columns([
fits.Column(name='col1', format='I', array=np.array([1, 2, 3])),
fits.Column(name='col2', format='I', array=np.array([4, 5, 6]))
])
hdul = fits.HDUList([img, table])
hdul.writeto(tabimg_file)
self.data_product.data = tabimg_file
self.assertTrue(is_fits_image_file(self.data_product.data.file))
示例2: test_byteswap
# 需要導入模塊: from astropy.io import fits [as 別名]
# 或者: from astropy.io.fits import Column [as 別名]
def test_byteswap(self):
p = fits.PrimaryHDU()
l = fits.HDUList()
n = np.zeros(3, dtype='i2')
n[0] = 1
n[1] = 60000
n[2] = 2
c = fits.Column(name='foo', format='i2', bscale=1, bzero=32768,
array=n)
t = fits.BinTableHDU.from_columns([c])
l.append(p)
l.append(t)
l.writeto(self.temp('test.fits'), overwrite=True)
with fits.open(self.temp('test.fits')) as p:
assert p[1].data[1]['foo'] == 60000.0
示例3: test_binary_table_data
# 需要導入模塊: from astropy.io import fits [as 別名]
# 或者: from astropy.io.fits import Column [as 別名]
def test_binary_table_data(self):
a1 = np.array(['NGC1001', 'NGC1002', 'NGC1003'])
a2 = np.array([11.1, 12.3, 15.2])
col1 = fits.Column(name='target', format='20A', array=a1)
col2 = fits.Column(name='V_mag', format='E', array=a2)
cols = fits.ColDefs([col1, col2])
tbhdu = fits.BinTableHDU.from_columns(cols)
tbhdu.writeto(self.temp('tmp.fits'), overwrite=True, checksum=True)
with fits.open(self.temp('tmp.fits'), checksum=True) as hdul:
assert comparerecords(tbhdu.data, hdul[1].data)
assert 'CHECKSUM' in hdul[0].header
assert hdul[0].header['CHECKSUM'] == 'D8iBD6ZAD6fAD6ZA'
assert 'DATASUM' in hdul[0].header
assert hdul[0].header['DATASUM'] == '0'
assert 'CHECKSUM' in hdul[1].header
assert hdul[1].header['CHECKSUM'] == 'aD1Oa90MaC0Ma90M'
assert 'DATASUM' in hdul[1].header
assert hdul[1].header['DATASUM'] == '1062205743'
示例4: test_column_endianness
# 需要導入模塊: from astropy.io import fits [as 別名]
# 或者: from astropy.io.fits import Column [as 別名]
def test_column_endianness(self):
"""
Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/77
(Astropy doesn't preserve byte order of non-native order column arrays)
"""
a = [1., 2., 3., 4.]
a1 = np.array(a, dtype='<f8')
a2 = np.array(a, dtype='>f8')
col1 = fits.Column(name='a', format='D', array=a1)
col2 = fits.Column(name='b', format='D', array=a2)
cols = fits.ColDefs([col1, col2])
tbhdu = fits.BinTableHDU.from_columns(cols)
assert (tbhdu.data['a'] == a1).all()
assert (tbhdu.data['b'] == a2).all()
# Double check that the array is converted to the correct byte-order
# for FITS (big-endian).
tbhdu.writeto(self.temp('testendian.fits'), overwrite=True)
with fits.open(self.temp('testendian.fits')) as hdul:
assert (hdul[1].data['a'] == a2).all()
assert (hdul[1].data['b'] == a2).all()
示例5: test_fits_record_len
# 需要導入模塊: from astropy.io import fits [as 別名]
# 或者: from astropy.io.fits import Column [as 別名]
def test_fits_record_len(self):
counts = np.array([312, 334, 308, 317])
names = np.array(['NGC1', 'NGC2', 'NGC3', 'NCG4'])
c1 = fits.Column(name='target', format='10A', array=names)
c2 = fits.Column(name='counts', format='J', unit='DN', array=counts)
c3 = fits.Column(name='notes', format='A10')
c4 = fits.Column(name='spectrum', format='5E')
c5 = fits.Column(name='flag', format='L', array=[1, 0, 1, 1])
coldefs = fits.ColDefs([c1, c2, c3, c4, c5])
tbhdu = fits.BinTableHDU.from_columns(coldefs)
tbhdu.writeto(self.temp('table1.fits'))
t1 = fits.open(self.temp('table1.fits'))
assert len(t1[1].data[0]) == 5
assert len(t1[1].data[0][0:4]) == 4
assert len(t1[1].data[0][0:5]) == 5
assert len(t1[1].data[0][0:6]) == 5
assert len(t1[1].data[0][0:7]) == 5
assert len(t1[1].data[0][1:4]) == 3
assert len(t1[1].data[0][1:5]) == 4
assert len(t1[1].data[0][1:6]) == 4
assert len(t1[1].data[0][1:7]) == 4
t1.close()
示例6: test_bin_table_with_logical_array
# 需要導入模塊: from astropy.io import fits [as 別名]
# 或者: from astropy.io.fits import Column [as 別名]
def test_bin_table_with_logical_array(self):
c1 = fits.Column(name='flag', format='2L',
array=[[True, False], [False, True]])
coldefs = fits.ColDefs([c1])
tbhdu1 = fits.BinTableHDU.from_columns(coldefs)
assert (tbhdu1.data.field('flag')[0] ==
np.array([True, False], dtype=bool)).all()
assert (tbhdu1.data.field('flag')[1] ==
np.array([False, True], dtype=bool)).all()
tbhdu = fits.BinTableHDU.from_columns(tbhdu1.data)
assert (tbhdu.data.field('flag')[0] ==
np.array([True, False], dtype=bool)).all()
assert (tbhdu.data.field('flag')[1] ==
np.array([False, True], dtype=bool)).all()
示例7: test_attribute_field_shadowing
# 需要導入模塊: from astropy.io import fits [as 別名]
# 或者: from astropy.io.fits import Column [as 別名]
def test_attribute_field_shadowing(self):
"""
Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/86
Numpy recarray objects have a poorly-considered feature of allowing
field access by attribute lookup. However, if a field name conincides
with an existing attribute/method of the array, the existing name takes
precence (making the attribute-based field lookup completely unreliable
in general cases).
This ensures that any FITS_rec attributes still work correctly even
when there is a field with the same name as that attribute.
"""
c1 = fits.Column(name='names', format='I', array=[1])
c2 = fits.Column(name='formats', format='I', array=[2])
c3 = fits.Column(name='other', format='I', array=[3])
t = fits.BinTableHDU.from_columns([c1, c2, c3])
assert t.data.names == ['names', 'formats', 'other']
assert t.data.formats == ['I'] * 3
assert (t.data['names'] == [1]).all()
assert (t.data['formats'] == [2]).all()
assert (t.data.other == [3]).all()
示例8: test_dim_column_byte_order_mismatch
# 需要導入模塊: from astropy.io import fits [as 別名]
# 或者: from astropy.io.fits import Column [as 別名]
def test_dim_column_byte_order_mismatch(self):
"""
When creating a table column with non-trivial TDIMn, and
big-endian array data read from an existing FITS file, the data
should not be unnecessarily byteswapped.
Regression test for https://github.com/astropy/astropy/issues/3561
"""
data = fits.getdata(self.data('random_groups.fits'))['DATA']
col = fits.Column(name='TEST', array=data, dim='(3,1,128,1,1)',
format='1152E')
thdu = fits.BinTableHDU.from_columns([col])
thdu.writeto(self.temp('test.fits'))
with fits.open(self.temp('test.fits')) as hdul:
assert np.all(hdul[1].data['TEST'] == data)
示例9: test_column_with_scaling
# 需要導入模塊: from astropy.io import fits [as 別名]
# 或者: from astropy.io.fits import Column [as 別名]
def test_column_with_scaling(self):
"""Check that a scaled column if correctly saved once it is modified.
Regression test for https://github.com/astropy/astropy/issues/6887
"""
c1 = fits.Column(name='c1', array=np.array([1], dtype='>i2'),
format='1I', bscale=1, bzero=32768)
S = fits.HDUList([fits.PrimaryHDU(),
fits.BinTableHDU.from_columns([c1])])
# Change value in memory
S[1].data['c1'][0] = 2
S.writeto(self.temp("a.fits"))
assert S[1].data['c1'] == 2
# Read and change value in memory
with fits.open(self.temp("a.fits")) as X:
X[1].data['c1'][0] = 10
assert X[1].data['c1'][0] == 10
# Write back to file
X.writeto(self.temp("b.fits"))
# Now check the file
with fits.open(self.temp("b.fits")) as hdul:
assert hdul[1].data['c1'][0] == 10
示例10: test_extend_variable_length_array
# 需要導入模塊: from astropy.io import fits [as 別名]
# 或者: from astropy.io.fits import Column [as 別名]
def test_extend_variable_length_array(self):
"""Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/54"""
def test(format_code):
arr = [[1] * 10] * 10
col1 = fits.Column(name='TESTVLF', format=format_code, array=arr)
col2 = fits.Column(name='TESTSCA', format='J', array=[1] * 10)
tb_hdu = fits.BinTableHDU.from_columns([col1, col2], nrows=15)
# This asserts that the normal 'scalar' column's length was extended
assert len(tb_hdu.data['TESTSCA']) == 15
# And this asserts that the VLF column was extended in the same manner
assert len(tb_hdu.data['TESTVLF']) == 15
# We can't compare the whole array since the _VLF is an array of
# objects, but comparing just the edge case rows should suffice
assert (tb_hdu.data['TESTVLF'][0] == arr[0]).all()
assert (tb_hdu.data['TESTVLF'][9] == arr[9]).all()
assert (tb_hdu.data['TESTVLF'][10] == ([0] * 10)).all()
assert (tb_hdu.data['TESTVLF'][-1] == ([0] * 10)).all()
for code in ('PJ()', 'QJ()'):
test(code)
示例11: test_variable_length_table_format_pd_from_object_array
# 需要導入模塊: from astropy.io import fits [as 別名]
# 或者: from astropy.io.fits import Column [as 別名]
def test_variable_length_table_format_pd_from_object_array(self):
def test(format_code):
a = np.array([np.array([7.2e-20, 7.3e-20]), np.array([0.0]),
np.array([0.0])], 'O')
acol = fits.Column(name='testa', format=format_code, array=a)
tbhdu = fits.BinTableHDU.from_columns([acol])
with ignore_warnings():
tbhdu.writeto(self.temp('newtable.fits'), overwrite=True)
with fits.open(self.temp('newtable.fits')) as tbhdu1:
assert tbhdu1[1].columns[0].format.endswith('D(2)')
for j in range(3):
for i in range(len(a[j])):
assert tbhdu1[1].data.field(0)[j][i] == a[j][i]
for code in ('PD()', 'QD()'):
test(code)
示例12: test_variable_length_table_format_pd_from_list
# 需要導入模塊: from astropy.io import fits [as 別名]
# 或者: from astropy.io.fits import Column [as 別名]
def test_variable_length_table_format_pd_from_list(self):
def test(format_code):
a = [np.array([7.2e-20, 7.3e-20]), np.array([0.0]),
np.array([0.0])]
acol = fits.Column(name='testa', format=format_code, array=a)
tbhdu = fits.BinTableHDU.from_columns([acol])
with ignore_warnings():
tbhdu.writeto(self.temp('newtable.fits'), overwrite=True)
with fits.open(self.temp('newtable.fits')) as tbhdu1:
assert tbhdu1[1].columns[0].format.endswith('D(2)')
for j in range(3):
for i in range(len(a[j])):
assert tbhdu1[1].data.field(0)[j][i] == a[j][i]
for code in ('PD()', 'QD()'):
test(code)
示例13: test_variable_length_table_format_pa_from_object_array
# 需要導入模塊: from astropy.io import fits [as 別名]
# 或者: from astropy.io.fits import Column [as 別名]
def test_variable_length_table_format_pa_from_object_array(self):
def test(format_code):
a = np.array([np.array(['a', 'b', 'c']), np.array(['d', 'e']),
np.array(['f'])], 'O')
acol = fits.Column(name='testa', format=format_code, array=a)
tbhdu = fits.BinTableHDU.from_columns([acol])
with ignore_warnings():
tbhdu.writeto(self.temp('newtable.fits'), overwrite=True)
with fits.open(self.temp('newtable.fits')) as hdul:
assert hdul[1].columns[0].format.endswith('A(3)')
for j in range(3):
for i in range(len(a[j])):
assert hdul[1].data.field(0)[j][i] == a[j][i]
for code in ('PA()', 'QA()'):
test(code)
示例14: test_variable_length_table_format_pa_from_list
# 需要導入模塊: from astropy.io import fits [as 別名]
# 或者: from astropy.io.fits import Column [as 別名]
def test_variable_length_table_format_pa_from_list(self):
def test(format_code):
a = ['a', 'ab', 'abc']
acol = fits.Column(name='testa', format=format_code, array=a)
tbhdu = fits.BinTableHDU.from_columns([acol])
with ignore_warnings():
tbhdu.writeto(self.temp('newtable.fits'), overwrite=True)
with fits.open(self.temp('newtable.fits')) as hdul:
assert hdul[1].columns[0].format.endswith('A(3)')
for j in range(3):
for i in range(len(a[j])):
assert hdul[1].data.field(0)[j][i] == a[j][i]
for code in ('PA()', 'QA()'):
test(code)
示例15: test_zero_precision_float_column
# 需要導入模塊: from astropy.io import fits [as 別名]
# 或者: from astropy.io.fits import Column [as 別名]
def test_zero_precision_float_column(self):
"""
Regression test for https://github.com/astropy/astropy/issues/3422
"""
c = fits.Column('TEST', 'F5.0', array=[1.1, 2.2, 3.3])
# The decimal places will be clipped
t = fits.TableHDU.from_columns([c])
t.writeto(self.temp('test.fits'))
with fits.open(self.temp('test.fits')) as hdul:
assert hdul[1].header['TFORM1'] == 'F5.0'
assert hdul[1].data['TEST'].dtype == np.dtype('float64')
assert np.all(hdul[1].data['TEST'] == [1.0, 2.0, 3.0])
# Check how the raw data looks
raw = np.rec.recarray.field(hdul[1].data, 'TEST')
assert raw.tostring() == b' 1. 2. 3.'