本文整理匯總了Python中apache_beam.testing.util.equal_to方法的典型用法代碼示例。如果您正苦於以下問題:Python util.equal_to方法的具體用法?Python util.equal_to怎麽用?Python util.equal_to使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類apache_beam.testing.util
的用法示例。
在下文中一共展示了util.equal_to方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_shard_variants
# 需要導入模塊: from apache_beam.testing import util [as 別名]
# 或者: from apache_beam.testing.util import equal_to [as 別名]
def test_shard_variants(self):
expected_shards = self._get_expected_variant_shards()
variants = [variant
for variant_list in expected_shards.values()
for variant in variant_list]
sharding = variant_sharding.VariantSharding(
'gcp_variant_transforms/data/sharding_configs/'
'homo_sapiens_default.yaml')
pipeline = TestPipeline()
shards = (
pipeline
| Create(variants, reshuffle=False)
| 'ShardVariants' >> beam.Partition(
shard_variants.ShardVariants(sharding),
sharding.get_num_shards()))
for i in range(sharding.get_num_shards()):
assert_that(shards[i], equal_to(expected_shards.get(i, [])),
label=str(i))
pipeline.run()
示例2: test_merge_header_definitions_one_header
# 需要導入模塊: from apache_beam.testing import util [as 別名]
# 或者: from apache_beam.testing.util import equal_to [as 別名]
def test_merge_header_definitions_one_header(self):
lines = [
'##INFO=<ID=NS,Number=1,Type=Integer,Description="Number samples">\n',
'#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT Sample1 Sample2\n'
]
headers = self._get_header_from_lines(lines, 'file1')
pipeline = TestPipeline()
merged_definitions = (
pipeline
| Create([headers])
| 'MergeDefinitions' >> merge_header_definitions.MergeDefinitions())
expected = VcfHeaderDefinitions()
expected._infos = {'NS': {Definition(1, 'Integer'): ['file1']}}
assert_that(merged_definitions, equal_to([expected]))
pipeline.run()
示例3: test_merge_header_definitions_two_conflicting_headers
# 需要導入模塊: from apache_beam.testing import util [as 別名]
# 或者: from apache_beam.testing.util import equal_to [as 別名]
def test_merge_header_definitions_two_conflicting_headers(self):
lines_1 = [
'##INFO=<ID=NS,Number=1,Type=Integer,Description="Number samples">\n',
'#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT Sample1 Sample2\n'
]
lines_2 = [
'##INFO=<ID=NS,Number=1,Type=Float,Description="Number samples">\n',
'#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT Sample3\n'
]
headers_1 = self._get_header_from_lines(lines_1, 'file1')
headers_2 = self._get_header_from_lines(lines_2, 'file2')
pipeline = TestPipeline()
merged_definitions = (
pipeline
| Create([headers_1, headers_2])
| 'MergeDefinitions' >> merge_header_definitions.MergeDefinitions())
expected = VcfHeaderDefinitions()
expected._infos = {'NS': {Definition(1, 'Integer'): ['file1'],
Definition(1, 'Float'): ['file2']}}
assert_that(merged_definitions, equal_to([expected]))
pipeline.run()
示例4: test_merge_header_definitions_same_id_in_info_and_format_headers
# 需要導入模塊: from apache_beam.testing import util [as 別名]
# 或者: from apache_beam.testing.util import equal_to [as 別名]
def test_merge_header_definitions_same_id_in_info_and_format_headers(self):
lines_1 = [
'##INFO=<ID=NS,Number=1,Type=Integer,Description="Number samples">\n',
'#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT Sample1 Sample2\n'
]
lines_2 = [
'##FORMAT=<ID=NS,Number=1,Type=Float,Description="Number samples">\n',
'#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT Sample3\n'
]
headers_1 = self._get_header_from_lines(lines_1, 'file1')
headers_2 = self._get_header_from_lines(lines_2, 'file2')
pipeline = TestPipeline()
merged_definitions = (
pipeline
| Create([headers_1, headers_2])
| 'MergeDefinitions' >> merge_header_definitions.MergeDefinitions())
expected = VcfHeaderDefinitions()
expected._infos = {'NS': {Definition(1, 'Integer'): ['file1']}}
expected._formats = {'NS': {Definition(1, 'Float'): ['file2']}}
assert_that(merged_definitions, equal_to([expected]))
pipeline.run()
示例5: test_convert_variant_to_bigquery_row
# 需要導入模塊: from apache_beam.testing import util [as 別名]
# 或者: from apache_beam.testing.util import equal_to [as 別名]
def test_convert_variant_to_bigquery_row(self):
variant_1, row_1, header_num_dict_1 = self._get_sample_variant_1()
variant_2, row_2, header_num_dict_2 = self._get_sample_variant_2()
variant_3, row_3, header_num_dict_3 = self._get_sample_variant_3()
header_num_dict = header_num_dict_1.copy()
header_num_dict.update(header_num_dict_2)
header_num_dict.update(header_num_dict_3)
header_fields = vcf_header_util.make_header(header_num_dict)
proc_var_1 = processed_variant.ProcessedVariantFactory(
header_fields).create_processed_variant(variant_1)
proc_var_2 = processed_variant.ProcessedVariantFactory(
header_fields).create_processed_variant(variant_2)
proc_var_3 = processed_variant.ProcessedVariantFactory(
header_fields).create_processed_variant(variant_3)
pipeline = TestPipeline(blocking=True)
bigquery_rows = (
pipeline
| Create([proc_var_1, proc_var_2, proc_var_3])
| 'ConvertToRow' >> beam.ParDo(ConvertVariantToRow(
self._row_generator)))
assert_that(bigquery_rows, equal_to([row_1, row_2, row_3]))
pipeline.run()
示例6: test_sample_ids_combiner_pipeline
# 需要導入模塊: from apache_beam.testing import util [as 別名]
# 或者: from apache_beam.testing.util import equal_to [as 別名]
def test_sample_ids_combiner_pipeline(self):
sample_ids = [hash_name('sample3'),
hash_name('sample2'),
hash_name('sample1')]
variant_calls = [
vcfio.VariantCall(sample_id=sample_ids[0]),
vcfio.VariantCall(sample_id=sample_ids[1]),
vcfio.VariantCall(sample_id=sample_ids[2])
]
variants = [
vcfio.Variant(calls=[variant_calls[0], variant_calls[1]]),
vcfio.Variant(calls=[variant_calls[1], variant_calls[2]])
]
pipeline = TestPipeline()
combined_sample_ids = (
pipeline
| transforms.Create(variants)
| 'CombineSampleIds' >> combine_sample_ids.SampleIdsCombiner()
| combiners.ToList())
assert_that(combined_sample_ids, equal_to([sample_ids]))
pipeline.run()
示例7: test_header_fields_inferred_one_variant
# 需要導入模塊: from apache_beam.testing import util [as 別名]
# 或者: from apache_beam.testing.util import equal_to [as 別名]
def test_header_fields_inferred_one_variant(self):
with TestPipeline() as p:
variant = self._get_sample_variant_1()
inferred_headers = (
p
| Create([variant])
| 'InferHeaderFields' >>
infer_headers.InferHeaderFields(defined_headers=None,
infer_headers=True))
expected_infos = {'IS': createInfo('IS', 1, 'String', ''),
'ISI': createInfo('ISI', 1, 'Integer', ''),
'ISF': createInfo('ISF', 1, 'Float', ''),
'IF': createInfo('IF', 1, 'Float', ''),
'IB': createInfo('IB', 0, 'Flag', ''),
'IA': createInfo('IA', '.', 'Integer', '')}
expected_formats = {'FI': createFormat('FI', 1, 'Integer', ''),
'FU': createFormat('FU', '.', 'Float', '')}
expected = vcf_header_io.VcfHeader(
infos=expected_infos, formats=expected_formats)
assert_that(inferred_headers, equal_to([expected]))
p.run()
示例8: test_defined_fields_filtered_one_variant
# 需要導入模塊: from apache_beam.testing import util [as 別名]
# 或者: from apache_beam.testing.util import equal_to [as 別名]
def test_defined_fields_filtered_one_variant(self):
# All FORMATs and INFOs are already defined in the header section of VCF
# files.
with TestPipeline() as p:
vcf_headers = self._get_sample_header_fields()
vcf_headers_side_input = p | 'vcf_headers' >> Create([vcf_headers])
variant = self._get_sample_variant_1()
inferred_headers = (
p
| Create([variant])
| 'InferHeaderFields' >>
infer_headers.InferHeaderFields(
pvalue.AsSingleton(vcf_headers_side_input),
infer_headers=True))
expected = vcf_header_io.VcfHeader()
assert_that(inferred_headers, equal_to([expected]))
p.run()
示例9: testReadTransformFn
# 需要導入模塊: from apache_beam.testing import util [as 別名]
# 或者: from apache_beam.testing.util import equal_to [as 別名]
def testReadTransformFn(self):
path = self.get_temp_dir()
# NOTE: we don't need to create or write to the transform_fn directory since
# ReadTransformFn never inspects this directory.
transform_fn_dir = os.path.join(
path, tft.TFTransformOutput.TRANSFORM_FN_DIR)
transformed_metadata_dir = os.path.join(
path, tft.TFTransformOutput.TRANSFORMED_METADATA_DIR)
metadata_io.write_metadata(test_metadata.COMPLETE_METADATA,
transformed_metadata_dir)
with beam.Pipeline() as pipeline:
saved_model_dir_pcoll, metadata = (
pipeline | transform_fn_io.ReadTransformFn(path))
beam_test_util.assert_that(
saved_model_dir_pcoll,
beam_test_util.equal_to([transform_fn_dir]),
label='AssertSavedModelDir')
# NOTE: metadata is currently read in a non-deferred manner.
self.assertEqual(metadata, test_metadata.COMPLETE_METADATA)
示例10: testTwoLangs
# 需要導入模塊: from apache_beam.testing import util [as 別名]
# 或者: from apache_beam.testing.util import equal_to [as 別名]
def testTwoLangs(self):
with TestPipeline() as p:
tokens = p | 'CreateInput' >> beam.Create(self.sample_input)
result = tokens | beam.ParDo(utils.CompileTokenizationInfo())
assert_that(result, equal_to([{
'lang': 'en',
'count': 1,
'num_preserved_chars': 13,
'num_dropped_chars': 2,
'num_non_unk_wordpieces': 4,
'preserved_ratio': [13/4],
'dropped_ratio': [2/15],
'wordpieces': collections.Counter(['the', 'app', '##le', 'sauce'])
}, {
'lang': 'fr',
'count': 1,
'num_preserved_chars': 14,
'num_dropped_chars': 0,
'num_non_unk_wordpieces': 5,
'preserved_ratio': [14/5],
'dropped_ratio': [0],
'wordpieces': collections.Counter(['bon', '##jour', 'bon', '##soir'])
}]))
示例11: testPrestoToExample
# 需要導入模塊: from apache_beam.testing import util [as 別名]
# 或者: from apache_beam.testing.util import equal_to [as 別名]
def testPrestoToExample(self):
with beam.Pipeline() as pipeline:
examples = (
pipeline | 'ToTFExample' >> executor._PrestoToExample(
exec_properties={
'input_config':
json_format.MessageToJson(
example_gen_pb2.Input(),
preserving_proto_field_name=True),
'custom_config':
json_format.MessageToJson(
example_gen_pb2.CustomConfig(),
preserving_proto_field_name=True)
},
split_pattern='SELECT i, f, s FROM `fake`'))
feature = {}
feature['i'] = tf.train.Feature(int64_list=tf.train.Int64List(value=[1]))
feature['f'] = tf.train.Feature(
float_list=tf.train.FloatList(value=[2.0]))
feature['s'] = tf.train.Feature(
bytes_list=tf.train.BytesList(value=[tf.compat.as_bytes('abc')]))
example_proto = tf.train.Example(
features=tf.train.Features(feature=feature))
util.assert_that(examples, util.equal_to([example_proto]))
示例12: test_handle_null_user_tags
# 需要導入模塊: from apache_beam.testing import util [as 別名]
# 或者: from apache_beam.testing.util import equal_to [as 別名]
def test_handle_null_user_tags(self):
"""Tests the _handle_null_user_tags function."""
source = [
{constants.USER_TAGS_KEY: []},
{constants.USER_TAGS_KEY: [1] * constants.USER_TAGS_LENGTH},
]
target = [
{constants.USER_TAGS_KEY: [0] * constants.USER_TAGS_LENGTH},
{constants.USER_TAGS_KEY: [1] * constants.USER_TAGS_LENGTH},
]
with TestPipeline() as p:
features = (p
| "CreateStubs" >> beam.Create(source)
| "HandleNullUserTags" >> beam.Map(
preprocess._handle_null_user_tags))
assert_that(features, equal_to(target))
示例13: test_normalize_user_tags
# 需要導入模塊: from apache_beam.testing import util [as 別名]
# 或者: from apache_beam.testing.util import equal_to [as 別名]
def test_normalize_user_tags(self):
"""Tests the _normalize_user_tags function."""
n_tags = constants.USER_TAGS_LENGTH
source = [
{constants.USER_TAGS_KEY: [0] * n_tags},
{constants.USER_TAGS_KEY: [1] * n_tags},
]
target = [
{constants.USER_TAGS_KEY: [0] * n_tags},
{constants.USER_TAGS_KEY: [n_tags**-1] * n_tags},
]
with TestPipeline() as p:
features = (p
| "CreateStubs" >> beam.Create(source)
| "NormalizeUserTags" >> beam.Map(
preprocess._normalize_user_tags))
assert_that(features, equal_to(target))
示例14: test_append_lifetime_duration
# 需要導入模塊: from apache_beam.testing import util [as 別名]
# 或者: from apache_beam.testing.util import equal_to [as 別名]
def test_append_lifetime_duration(self):
"""Test _append_life_duration step.
Expected behavior is that the pipeline appends the calculated lifetime
duration (in days) of each user to a list of dicts containing BigQuery
output.
"""
with TestPipeline() as p:
input_data = (
p
| 'CreateSourceData' >> beam.Create(
PreprocessTest.SOURCE_DATA))
duration_data = (
input_data
| 'AppendLifetime' >> beam.Map(
preprocess.append_lifetime_duration))
assert_that(duration_data, equal_to(
PreprocessTest.DURATION_DATA))
示例15: test_append_label
# 需要導入模塊: from apache_beam.testing import util [as 別名]
# 或者: from apache_beam.testing.util import equal_to [as 別名]
def test_append_label(self):
"""Test _append_label step.
Expected behavior is that the pipeline appends the String label (i.e.
'0-2M') of each user to a list of dicts containing BigQuery output.
"""
with TestPipeline() as p:
input_data = (
p
| 'CreateDurationData' >> beam.Create(
PreprocessTest.DURATION_DATA))
label_data = (
input_data
| 'AppendLabel' >> beam.Map(
preprocess.append_label))
assert_that(label_data, equal_to(
PreprocessTest.LABEL_DATA))