當前位置: 首頁>>代碼示例>>Python>>正文


Python apache_beam.DoFn方法代碼示例

本文整理匯總了Python中apache_beam.DoFn方法的典型用法代碼示例。如果您正苦於以下問題:Python apache_beam.DoFn方法的具體用法?Python apache_beam.DoFn怎麽用?Python apache_beam.DoFn使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在apache_beam的用法示例。


在下文中一共展示了apache_beam.DoFn方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: shuffle

# 需要導入模塊: import apache_beam [as 別名]
# 或者: from apache_beam import DoFn [as 別名]
def shuffle(p):
  """Shuffles data from PCollection.

  Args:
    p: PCollection.

  Returns:
    PCollection of shuffled data.
  """

  class _AddRandomKey(beam.DoFn):

    def process(self, element):
      yield random.random(), element

  shuffled_data = (
      p
      | 'PairWithRandom' >> beam.ParDo(_AddRandomKey())
      | 'GroupByRandom' >> beam.GroupByKey()
      | 'DropRandom' >> beam.FlatMap(lambda (k, vs): vs))
  return shuffled_data 
開發者ID:GoogleCloudPlatform,項目名稱:professional-services,代碼行數:23,代碼來源:preprocess.py

示例2: shuffle_data

# 需要導入模塊: import apache_beam [as 別名]
# 或者: from apache_beam import DoFn [as 別名]
def shuffle_data(p):
  """Shuffles data from PCollection.

  Args:
    p: PCollection.

  Returns:
    PCollection of shuffled data.
  """

  class _AddRandomKey(beam.DoFn):

    def process(self, element):
      yield (random.random(), element)

  shuffled_data = (
      p
      | 'PairWithRandom' >> beam.ParDo(_AddRandomKey())
      | 'GroupByRandom' >> beam.GroupByKey()
      | 'DropRandom' >> beam.FlatMap(lambda (k, vs): vs))
  return shuffled_data 
開發者ID:GoogleCloudPlatform,項目名稱:professional-services,代碼行數:23,代碼來源:preprocess.py

示例3: process

# 需要導入模塊: import apache_beam [as 別名]
# 或者: from apache_beam import DoFn [as 別名]
def process(self,
                element,
                timestamp=beam.DoFn.TimestampParam,
                window=beam.DoFn.WindowParam,
                pane_info=beam.DoFn.PaneInfoParam):

        # Logging to audit triggering of side input refresh process. Statement will be logged only whenever the pubsub notification
        # triggers side input refresh process (i.e normally once in every x hours)
        if isinstance(window, beam.transforms.window.GlobalWindow):
            logging.info(
                f"(Re)loading side input data from basepath {element.decode()} for global window: {timestamp} - {window}"
            )
        else:
            logging.info(
                f"(Re)loading side input data from basepath {element.decode()} for window: {util.get_formatted_time(window.start)} - {util.get_formatted_time(window.end)}"
            )

        for sideinput_type in self.sideinput_types:
            yield beam.pvalue.TaggedOutput(
                sideinput_type,
                FileSystems.join(element.decode(), sideinput_type,
                                 self.file_prefix)) 
開發者ID:GoogleCloudPlatform,項目名稱:professional-services,代碼行數:24,代碼來源:dofns.py

示例4: process

# 需要導入模塊: import apache_beam [as 別名]
# 或者: from apache_beam import DoFn [as 別名]
def process(self, element, *args, **kwargs):
        """This function creates a random record based on the properties
        of the passed DataGenerator object for each element in prior the
        PCollection.

        Args:
            element: A single element of the PCollection
        """

        faker_schema = self.data_gen.get_faker_schema()
        try:
            # Here the element is treated as the dictionary representing a single row
            # of the histogram table.
            frequency = element.get('frequency')

            #TODO make this a splittable DoFn to avoid scenario where we hang for large
            # frequency values.
            for i in range(int(frequency)):
                row = self.generate_fake(fschema=faker_schema,
                                         key_dict=element)
                yield row
        except AttributeError:
            # The contents of this element are ignored if they are a string.
            row = self.generate_fake(fschema=faker_schema, key_dict=element)
            yield row 
開發者ID:GoogleCloudPlatform,項目名稱:professional-services,代碼行數:27,代碼來源:PrettyDataGenerator.py

示例5: process

# 需要導入模塊: import apache_beam [as 別名]
# 或者: from apache_beam import DoFn [as 別名]
def process(self, inputs):
    # Create a session for every worker only once. The session is not
    # pickleable, so it can't be created at the DoFn constructor.
    if not self.session:
      self.graph = ops.Graph()
      with self.graph.as_default():
        self.session = tf.Session()
        metagraph_def = tf.compat.v1.saved_model.load(
            self.session, {self.meta_tag}, self.model_dir)
      signature_def = metagraph_def.signature_def[self.meta_signature]

      # inputs
      self.feed_tensors = {
          k: self.graph.get_tensor_by_name(v.name)
          for k, v in signature_def.inputs.items()
      }

      # outputs/predictions
      self.fetch_tensors = {
          k: self.graph.get_tensor_by_name(v.name)
          for k, v in signature_def.outputs.items()
      }

    # Create a feed_dict for a single element.
    feed_dict = {
        tensor: [inputs[key]]
        for key, tensor in self.feed_tensors.items()
        if key in inputs
    }
    results = self.session.run(self.fetch_tensors, feed_dict)

    yield {
        'id': inputs[self.id_key],
        'predictions': results[self.meta_predictions][0].tolist()
    }


# [START dataflow_molecules_run_definition] 
開發者ID:GoogleCloudPlatform,項目名稱:cloudml-samples,代碼行數:40,代碼來源:predict.py

示例6: __init__

# 需要導入模塊: import apache_beam [as 別名]
# 或者: from apache_beam import DoFn [as 別名]
def __init__(self, all_periods, all_nbins, weight_min_factor,
               duration_density_min, duration_min_days, duration_density_max,
               duration_min_fraction):
    """Initializes the DoFn."""
    self.all_periods = all_periods
    self.all_nbins = all_nbins
    self.max_nbins = max(self.all_nbins)
    self.weight_min_factor = weight_min_factor
    self.duration_density_min = duration_density_min
    self.duration_min_days = duration_min_days
    self.duration_density_max = duration_density_max
    self.duration_min_fraction = duration_min_fraction 
開發者ID:google-research,項目名稱:exoplanet-ml,代碼行數:14,代碼來源:bls_fns.py

示例7: __init__

# 需要導入模塊: import apache_beam [as 別名]
# 或者: from apache_beam import DoFn [as 別名]
def __init__(self, model_name, model_dir, config_name=None):
    """Initializes the DoFn.

    Args:
      model_name: Name of the model class.
      model_dir: Directory containing a model checkpoint.
      config_name: Optional name of the model configuration. If not specified,
        the file 'config.json' in model_dir is used.
    """
    # Look up the model class.
    model_class = models.get_model_class(model_name)

    # Find the latest checkpoint.
    checkpoint_file = tf.train.latest_checkpoint(model_dir)
    if not checkpoint_file:
      raise ValueError("No checkpoint file found in: {}".format(model_dir))

    # Get the model configuration.
    if config_name:
      config = models.get_model_config(model_name, config_name)
    else:
      with tf.gfile.Open(os.path.join(model_dir, "config.json")) as f:
        config = json.load(f)
    config = configdict.ConfigDict(config)

    self.model_class = model_class
    self.checkpoint_file = checkpoint_file
    self.config = config 
開發者ID:google-research,項目名稱:exoplanet-ml,代碼行數:30,代碼來源:prediction_fns.py

示例8: __init__

# 需要導入模塊: import apache_beam [as 別名]
# 或者: from apache_beam import DoFn [as 別名]
def __init__(self,
               gap_width,
               normalize_method,
               normalize_args,
               upward_outlier_sigma_cut=None,
               downward_outlier_sigma_cut=None,
               remove_events_width_factor=1.5,
               output_name="light_curve"):
    """Initializes the DoFn.

    Args:
      gap_width: Minimum gap size (in time units) to split the light curve
        before fitting the normalization curve.
      normalize_method: Method for fitting the normalization curve.
      normalize_args: Arguments passed to the function that computes the
        normalization curve.
      upward_outlier_sigma_cut: Number of standard deviations from the median
        flux value above which upward outliers are removed.
      downward_outlier_sigma_cut: Number of standard deviations from the median
        flux value above which downward outliers are removed.
      remove_events_width_factor: Fraction of the duration to remove when
        removing periodic events.
      output_name: Name of the processed light curve in the output dict.
    """
    self.remove_events_width_factor = remove_events_width_factor
    self.gap_width = gap_width
    self.normalize_method = normalize_method
    self.normalize_args = normalize_args
    self.upward_outlier_sigma_cut = upward_outlier_sigma_cut
    self.downward_outlier_sigma_cut = downward_outlier_sigma_cut
    self.output_name = output_name 
開發者ID:google-research,項目名稱:exoplanet-ml,代碼行數:33,代碼來源:light_curve_fns.py

示例9: main

# 需要導入模塊: import apache_beam [as 別名]
# 或者: from apache_beam import DoFn [as 別名]
def main(argv):
  if len(argv) > 1:
    raise app.UsageError("Too many command-line arguments.")

  def pipeline(root):
    """Beam pipeline for preprocessing open images."""
    assert FLAGS.input_file_pattern
    assert FLAGS.output_dir
    assert FLAGS.output_name
    assert FLAGS.num_shards
    assert FLAGS.kepid_whitelist

    # Read label whitelist.
    kepid_whitelist = [int(kepid) for kepid in FLAGS.kepid_whitelist.split(",")]
    logging.info("Read Kepid whitelist with %d labels", len(kepid_whitelist))

    # Initialize DoFn.
    process_example = ProcessExampleDoFn(kepid_whitelist)

    # Create Pipeline.
    # pylint: disable=expression-not-assigned
    (root
     | "read_tfrecord" >> beam.io.tfrecordio.ReadFromTFRecord(
         FLAGS.input_file_pattern,
         coder=beam.coders.ProtoCoder(tf.train.Example))
     | "process_examples" >> beam.ParDo(process_example)
     | "reshuffle" >> beam.Reshuffle()
     | "write_tfrecord" >> beam.io.tfrecordio.WriteToTFRecord(
         os.path.join(FLAGS.output_dir, FLAGS.output_name),
         coder=beam.coders.ProtoCoder(tf.train.Example),
         num_shards=FLAGS.num_shards))
    # pylint: enable=expression-not-assigned

  pipeline.run()
  logging.info("Processing complete.") 
開發者ID:google-research,項目名稱:exoplanet-ml,代碼行數:37,代碼來源:beam_sample_tfrecord.py

示例10: __init__

# 需要導入模塊: import apache_beam [as 別名]
# 或者: from apache_beam import DoFn [as 別名]
def __init__(self,
               kepler_data_dir,
               flux_column="PDCSAP_FLUX",
               injected_group=None,
               scramble_type=None,
               invert_light_curves=False,
               upward_outlier_clipping=None,
               downward_outlier_clipping=None,
               clip_lowest_n_values=None,
               normalize_stddev=False):
    """Initializes the DoFn.

    Args:
      kepler_data_dir: Base directory containing Kepler data.
      flux_column: Name of the flux column to extract.
      injected_group: Optional string specifying the injected group. One of
        {'inj1', 'inj2', 'inj3'}.
      scramble_type: Optional string specifying the scramble order. One of
        {'SCR1', 'SCR2', 'SCR3'}.
      invert_light_curves: Whether to reflect light curves around the median
        flux value.
      upward_outlier_clipping: If specified, clip upward flux values to this
        number of multiples of the standard deviation.
      downward_outlier_clipping: If specified, clip downward flux values to this
        number of multiples of the standard deviation.
      clip_lowest_n_values: If specified, clip lowest flux values to the value
        of the nth lowest value.
      normalize_stddev: Whether to divide the flux by the standard deviation.
    """
    self.kepler_data_dir = kepler_data_dir
    self.flux_column = flux_column
    self.injected_group = injected_group
    self.extension = "INJECTED LIGHTCURVE" if injected_group else "LIGHTCURVE"
    self.scramble_type = scramble_type
    self.invert_light_curves = invert_light_curves
    self.upward_outlier_clipping = upward_outlier_clipping
    self.downward_outlier_clipping = downward_outlier_clipping
    self.clip_lowest_n_values = clip_lowest_n_values
    self.normalize_stddev = normalize_stddev 
開發者ID:google-research,項目名稱:exoplanet-ml,代碼行數:41,代碼來源:process_light_curve.py

示例11: __init__

# 需要導入模塊: import apache_beam [as 別名]
# 或者: from apache_beam import DoFn [as 別名]
def __init__(self, hparams, dataset_overrides):
    """Initializes the DoFn."""
    self.hparams = hparams
    self.dataset_overrides = dataset_overrides 
開發者ID:google-research,項目名稱:exoplanet-ml,代碼行數:6,代碼來源:prediction_fns.py

示例12: __init__

# 需要導入模塊: import apache_beam [as 別名]
# 或者: from apache_beam import DoFn [as 別名]
def __init__(self, batch_size):
    """Constructor of EmitAsBatchDoFn beam.DoFn class.

    Args:
      batch_size: the max size we want to buffer the records before emitting.
    """
    self._batch_size = batch_size
    self._cached = [] 
開發者ID:googledatalab,項目名稱:pydatalab,代碼行數:10,代碼來源:predict.py

示例13: process

# 需要導入模塊: import apache_beam [as 別名]
# 或者: from apache_beam import DoFn [as 別名]
def process(self, batch, saved_model_dir):
    """Runs the given graph to realize the output `Tensor` or `SparseTensor`s.

    Runs the graph in a TF session for computing the output values of the
    `Tensor` or `SparseTensor`s, given an input row of data (input `Tensor` or
    `SparseTensor`s).

    Args:
      batch: the batch of elements being processed by the DoFn
      saved_model_dir: Directory containing saved model.

    Yields:
      A representation of output features as a dict mapping keys (logical column
      names) to values.
    """
    if self._graph_state is None:
      # If available, acquire will return a cached _GraphState, since calling
      # _make_graph_state is expensive.
      self._graph_state = self._shared_graph_state_handle.acquire(
          lambda: self._make_graph_state(saved_model_dir))

    # This should remain true throughout the lifetime of this DoFn, regardless
    # of whether or not self._graph_state was cached.
    assert self._graph_state.saved_model_dir == saved_model_dir

    yield self._handle_batch(batch) 
開發者ID:tensorflow,項目名稱:transform,代碼行數:28,代碼來源:impl.py

示例14: process

# 需要導入模塊: import apache_beam [as 別名]
# 或者: from apache_beam import DoFn [as 別名]
def process(self, element, publish_time=beam.DoFn.TimestampParam):
        """Processes each incoming windowed element by extracting the Pub/Sub
        message and its publish timestamp into a dictionary. `publish_time`
        defaults to the publish timestamp returned by the Pub/Sub server. It
        is bound to each element by Beam at runtime.
        """

        yield {
            "message_body": element.decode("utf-8"),
            "publish_time": datetime.datetime.utcfromtimestamp(
                float(publish_time)
            ).strftime("%Y-%m-%d %H:%M:%S.%f"),
        } 
開發者ID:GoogleCloudPlatform,項目名稱:python-docs-samples,代碼行數:15,代碼來源:PubSubToGCS.py

示例15: run

# 需要導入模塊: import apache_beam [as 別名]
# 或者: from apache_beam import DoFn [as 別名]
def run(input_topic, output_path, window_size=1.0, pipeline_args=None):
    # `save_main_session` is set to true because some DoFn's rely on
    # globally imported modules.
    pipeline_options = PipelineOptions(
        pipeline_args, streaming=True, save_main_session=True
    )

    with beam.Pipeline(options=pipeline_options) as pipeline:
        (
            pipeline
            | "Read PubSub Messages"
            >> beam.io.ReadFromPubSub(topic=input_topic)
            | "Window into" >> GroupWindowsIntoBatches(window_size)
            | "Write to GCS" >> beam.ParDo(WriteBatchesToGCS(output_path))
        ) 
開發者ID:GoogleCloudPlatform,項目名稱:python-docs-samples,代碼行數:17,代碼來源:PubSubToGCS.py


注:本文中的apache_beam.DoFn方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。