當前位置: 首頁>>代碼示例>>Python>>正文


Python apache_beam.CombineGlobally方法代碼示例

本文整理匯總了Python中apache_beam.CombineGlobally方法的典型用法代碼示例。如果您正苦於以下問題:Python apache_beam.CombineGlobally方法的具體用法?Python apache_beam.CombineGlobally怎麽用?Python apache_beam.CombineGlobally使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在apache_beam的用法示例。


在下文中一共展示了apache_beam.CombineGlobally方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: expand

# 需要導入模塊: import apache_beam [as 別名]
# 或者: from apache_beam import CombineGlobally [as 別名]
def expand(self, inputs):
    pcoll, = inputs
    # We specify a fanout so that the packed combiner doesn't exhibit stragglers
    # during the 'reduce' phase when we have a lot of combine analyzers packed.
    fanout = int(math.ceil(math.sqrt(len(self._combiners))))
    # TODO(b/34792459): Don't set with_defaults.
    return (
        pcoll
        | 'InitialPackedCombineGlobally' >> beam.CombineGlobally(
            _PackedCombinerWrapper(
                self._combiners,
                self._tf_config,
                is_combining_accumulators=False
            )
        ).with_fanout(fanout).with_defaults(False)
        | 'Count' >>
        common.IncrementCounter('num_packed_accumulate_combiners')) 
開發者ID:tensorflow,項目名稱:transform,代碼行數:19,代碼來源:analyzer_impls.py

示例2: _lint

# 需要導入模塊: import apache_beam [as 別名]
# 或者: from apache_beam import CombineGlobally [as 別名]
def _lint(self, examples):
    """Returns the `PTransform` for the EmptyExampleDetector linter.

    Args:
      examples: A `PTransform` that yields a `PCollection` of `tf.Example`s.

    Returns:
      A `PTransform` that yields a `LintResult` of the format
        warnings: [num empties]
        lint_sample: None
    """
    n_empties = (
        examples
        | 'DetectEmpties' >> beam.Map(self._example_is_empty)
        | 'Count' >> beam.CombineGlobally(sum)
        | 'NoZero' >> beam.Filter(bool)
        | 'ToResult' >> beam.Map(
            lambda w: self._make_result(warnings=[str(w)])))
    return n_empties 
開發者ID:brain-research,項目名稱:data-linter,代碼行數:21,代碼來源:linters.py

示例3: expand

# 需要導入模塊: import apache_beam [as 別名]
# 或者: from apache_beam import CombineGlobally [as 別名]
def expand(self, pcoll):
    return pcoll | 'MergeHeaders' >> beam.CombineGlobally(
        _MergeHeadersFn(self._header_merger)).without_defaults() 
開發者ID:googlegenomics,項目名稱:gcp-variant-transforms,代碼行數:5,代碼來源:merge_headers.py

示例4: expand

# 需要導入模塊: import apache_beam [as 別名]
# 或者: from apache_beam import CombineGlobally [as 別名]
def expand(self, estimates):
    return (estimates
            | 'ExtractFileSize' >> beam.Map(
                lambda estimate: estimate.size_in_bytes)
            | 'SumFileSizes' >> beam.CombineGlobally(sum)) 
開發者ID:googlegenomics,項目名稱:gcp-variant-transforms,代碼行數:7,代碼來源:extract_input_size.py

示例5: expand

# 需要導入模塊: import apache_beam [as 別名]
# 或者: from apache_beam import CombineGlobally [as 別名]
def expand(self, pcoll):
    return pcoll | beam.CombineGlobally(
        _MergeDefinitionsFn(self._definitions_merger)).without_defaults() 
開發者ID:googlegenomics,項目名稱:gcp-variant-transforms,代碼行數:5,代碼來源:merge_header_definitions.py

示例6: MakeSummary

# 需要導入模塊: import apache_beam [as 別名]
# 或者: from apache_beam import CombineGlobally [as 別名]
def MakeSummary(pcoll, metric_fn, metric_keys):  # pylint: disable=invalid-name
    """
    Summary PTransofrm used in Dataflow.
    """
    return (
        pcoll |
        "ApplyMetricFnPerInstance" >> beam.Map(metric_fn) |
        "PairWith1" >> beam.Map(lambda tup: tup + (1,)) |
        "SumTuple" >> beam.CombineGlobally(beam.combiners.TupleCombineFn(
            *([sum] * (len(metric_keys) + 1)))) |
        "AverageAndMakeDict" >> beam.Map(
            lambda tup: dict(
                [(name, tup[i] / tup[-1]) for i, name in enumerate(metric_keys)] +
                [("count", tup[-1])]))) 
開發者ID:apache,項目名稱:airflow,代碼行數:16,代碼來源:mlengine_prediction_summary.py

示例7: get_stats_of_glyphazzn

# 需要導入模塊: import apache_beam [as 別名]
# 或者: from apache_beam import CombineGlobally [as 別名]
def get_stats_of_glyphazzn(filepattern, output_path):
  """Computes the Mean and Std across examples in glyphazzn dataset."""
  def pipeline(root):
    """Pipeline for computing means/std from dataset."""
    examples = root | 'Read' >> beam.io.tfrecordio.ReadFromTFRecord(filepattern)
    examples = examples | 'Deserialize' >> beam.Map(_decode_tfexample)
    examples = examples | 'GetMeanStdev' >> beam.CombineGlobally(MeanStddev())
    examples = examples | 'MeanStdevToSerializedTFRecord' >> beam.Map(
        _mean_to_example)
    (examples | 'WriteToTFRecord' >> beam.io.tfrecordio.WriteToTFRecord(
        output_path, coder=beam.coders.ProtoCode(tf.train.Example)))
  return pipeline 
開發者ID:magenta,項目名稱:magenta,代碼行數:14,代碼來源:datagen_beam.py

示例8: expand

# 需要導入模塊: import apache_beam [as 別名]
# 或者: from apache_beam import CombineGlobally [as 別名]
def expand(self, pcoll):
      output_tuple = (
          pcoll
          | beam.FlatMap(self._flatten_fn)
          | beam.CombineGlobally(self._sum_fn)
          | beam.FlatMap(self._extract_outputs).with_outputs('0', '1'))
      return (output_tuple['0'], output_tuple['1']) 
開發者ID:tensorflow,項目名稱:transform,代碼行數:9,代碼來源:impl_test.py

示例9: testEqual

# 需要導入模塊: import apache_beam [as 別名]
# 或者: from apache_beam import CombineGlobally [as 別名]
def testEqual(self):
    with TestPipeline() as p:
      tokens = p | beam.Create(self.sample_input)
      result = tokens | beam.CombineGlobally(utils.CalculateCoefficients(0.5))
      assert_that(result, equal_to([{'en': 1.0, 'fr': 1.0}])) 
開發者ID:tensorflow,項目名稱:text,代碼行數:7,代碼來源:utils_test.py

示例10: testNotEqual

# 需要導入模塊: import apache_beam [as 別名]
# 或者: from apache_beam import CombineGlobally [as 別名]
def testNotEqual(self):
    with TestPipeline() as p:
      sample_input = [('I', 'en'), ('kind', 'en'), ('of', 'en'), ('like', 'en'),
                      ('to', 'en'), ('eat', 'en'), ('pie', 'en'), ('!', 'en'),
                      ('Je', 'fr'), ('suis', 'fr'), ('une', 'fr'),
                      ('fille', 'fr'), ('.', 'fr')]
      tokens = p | beam.Create(sample_input)
      result = (tokens
                | beam.CombineGlobally(utils.CalculateCoefficients(0.5))
                | beam.ParDo(CompareValues()))
      assert_that(result, equal_to([True])) 
開發者ID:tensorflow,項目名稱:text,代碼行數:13,代碼來源:utils_test.py

示例11: testUnsorted

# 需要導入模塊: import apache_beam [as 別名]
# 或者: from apache_beam import CombineGlobally [as 別名]
def testUnsorted(self):
    with TestPipeline() as p:
      tokens = p | 'CreateInput' >> beam.Create(self.sample_input)
      result = tokens | beam.CombineGlobally(utils.SortByCount())
      assert_that(result, equal_to([[('c', 9), ('a', 5), ('d', 4), ('b', 2)]])) 
開發者ID:tensorflow,項目名稱:text,代碼行數:7,代碼來源:utils_test.py

示例12: check_size

# 需要導入模塊: import apache_beam [as 別名]
# 或者: from apache_beam import CombineGlobally [as 別名]
def check_size(p, name, path):
  """Performs checks on the input pipeline and stores stats in specfied path.

  Checks performed: counts rows and derives class distribution.

  Args:
    p: PCollection, input pipeline.
    name: string, unique identifier for the beam step.
    path: string: path to store stats.

  Returns:
    PCollection
  """

  class _Combine(beam.CombineFn):
    """Counts and take the average of positive classes in the pipeline."""

    def create_accumulator(self):
      return (0.0, 0.0)

    def add_input(self, sum_count, inputs):
      (s, count) = sum_count
      return s + inputs, count + 1

    def merge_accumulators(self, accumulators):
      sums, counts = zip(*accumulators)
      return sum(sums), sum(counts)

    # We should not consider the case count == 0 as an error (class initialized
    # with count == 0).
    def extract_output(self, sum_count):
      (s, count) = sum_count
      return count, (1.0 * s / count) if count else float('NaN')

  return (p
          | 'CheckMapTo_1_{}'.format(name) >>
          beam.Map(lambda x: x[constants.LABEL_COLUMN])
          | 'CheckSum_{}'.format(name) >> beam.CombineGlobally(_Combine())
          | 'CheckRecord_{}'.format(name) >> beam.io.WriteToText(
              '{}.txt'.format(path))) 
開發者ID:GoogleCloudPlatform,項目名稱:professional-services,代碼行數:42,代碼來源:preprocess.py

示例13: expand

# 需要導入模塊: import apache_beam [as 別名]
# 或者: from apache_beam import CombineGlobally [as 別名]
def expand(self, pcoll):
    to_dict = lambda x: {x[0]: x[1]}
    example_counts = (
        pcoll
        | "count_examples" >> beam.combiners.Count.Globally()
        | "key_example_counts" >> beam.Map(
            lambda x: ("examples", x))
        | "example_count_dict" >> beam.Map(to_dict))
    def _count_tokens(pcoll, feat):
      return (
          pcoll
          | "key_%s_toks" % feat >> beam.Map(
              lambda x:  # pylint:disable=g-long-lambda
              ("%s_tokens" % feat, int(sum(x[feat] > 1)) if feat in x else 0)))
    token_counts = (
        [_count_tokens(pcoll, feat)
         for feat in self._output_features]
        | "flatten_tokens" >> beam.Flatten()
        | "count_tokens" >> beam.CombinePerKey(sum)
        | "token_count_dict" >> beam.Map(to_dict))

    def _merge_dicts(dicts):
      merged_dict = {}
      for d in dicts:
        assert not set(merged_dict).intersection(d)
        merged_dict.update(d)
      return merged_dict
    return (
        [example_counts, token_counts]
        | "flatten_counts" >> beam.Flatten()
        | "merge_stats" >> beam.CombineGlobally(_merge_dicts)) 
開發者ID:google-research,項目名稱:text-to-text-transfer-transformer,代碼行數:33,代碼來源:cache_tasks_main.py

示例14: test_invalid_row

# 需要導入模塊: import apache_beam [as 別名]
# 或者: from apache_beam import CombineGlobally [as 別名]
def test_invalid_row(self):
    input_lines = ['1,2.0,hello', '5,12.34']
    column_names = ['int_feature', 'float_feature', 'str_feature']
    with self.assertRaisesRegex(  # pylint: disable=g-error-prone-assert-raises
        ValueError, '.*Columns do not match specified csv headers.*'):
      with beam.Pipeline() as p:
        result = (
            p | beam.Create(input_lines, reshuffle=False)
            | beam.ParDo(csv_decoder.ParseCSVLine(delimiter=','))
            | beam.Keys()
            | beam.CombineGlobally(
                csv_decoder.ColumnTypeInferrer(
                    column_names, skip_blank_lines=False)))
        beam_test_util.assert_that(result, lambda _: None) 
開發者ID:tensorflow,項目名稱:tfx-bsl,代碼行數:16,代碼來源:csv_decoder_test.py

示例15: word_count

# 需要導入模塊: import apache_beam [as 別名]
# 或者: from apache_beam import CombineGlobally [as 別名]
def word_count(input_path, output_path, raw_metadata, min_token_frequency=2):
  """Returns a pipeline counting words and writing the output.

  Args:
    input_path: recordio file to read
    output_path: path in which to write the output
    raw_metadata: metadata of input tf.Examples
    min_token_frequency: the min frequency for a token to be included
  """

  lang_set = set(FLAGS.lang_set.split(','))

  # Create pipeline.
  pipeline = beam.Pipeline()

  with tft_beam.Context(temp_dir=tempfile.mkdtemp()):
    converter = tft.coders.ExampleProtoCoder(
        raw_metadata.schema, serialized=False)

    # Read raw data and convert to TF Transform encoded dict.
    raw_data = (
        pipeline
        | 'ReadInputData' >> beam.io.tfrecordio.ReadFromTFRecord(
            input_path, coder=beam.coders.ProtoCoder(tf.train.Example))
        | 'DecodeInputData' >> beam.Map(converter.decode))

    # Apply TF Transform.
    (transformed_data, _), _ = (
        (raw_data, raw_metadata)
        | 'FilterLangAndExtractToken' >> tft_beam.AnalyzeAndTransformDataset(
            utils.count_preprocessing_fn(FLAGS.text_key,
                                         FLAGS.language_code_key)))

    # Filter by languages.
    tokens = (
        transformed_data
        | 'FilterByLang' >> beam.ParDo(utils.FilterTokensByLang(lang_set)))

    # Calculate smoothing coefficients.
    coeffs = (
        tokens
        | 'CalculateSmoothingCoefficients' >> beam.CombineGlobally(
            utils.CalculateCoefficients(FLAGS.smoothing_exponent)))

    # Apply smoothing, aggregate counts, and sort words by count.
    _ = (
        tokens
        | 'ApplyExponentialSmoothing' >> beam.ParDo(
            utils.ExponentialSmoothing(), beam.pvalue.AsSingleton(coeffs))
        | 'SumCounts' >> beam.CombinePerKey(sum)
        | 'FilterLowCounts' >> beam.ParDo(utils.FilterByCount(
            FLAGS.max_word_length, min_token_frequency))
        | 'MergeAndSortCounts' >> beam.CombineGlobally(utils.SortByCount())
        | 'Flatten' >> beam.FlatMap(lambda x: x)
        | 'FormatCounts' >> beam.Map(lambda tc: '%s\t%s' % (tc[0], tc[1]))
        | 'WriteSortedCount' >> beam.io.WriteToText(
            output_path, shard_name_template=''))

  return pipeline 
開發者ID:tensorflow,項目名稱:text,代碼行數:61,代碼來源:generate_word_counts.py


注:本文中的apache_beam.CombineGlobally方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。