本文整理匯總了Python中allennlp.nn.util.weighted_sum方法的典型用法代碼示例。如果您正苦於以下問題:Python util.weighted_sum方法的具體用法?Python util.weighted_sum怎麽用?Python util.weighted_sum使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類allennlp.nn.util
的用法示例。
在下文中一共展示了util.weighted_sum方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_weighted_sum_works_on_simple_input
# 需要導入模塊: from allennlp.nn import util [as 別名]
# 或者: from allennlp.nn.util import weighted_sum [as 別名]
def test_weighted_sum_works_on_simple_input(self):
batch_size = 1
sentence_length = 5
embedding_dim = 4
sentence_array = numpy.random.rand(batch_size, sentence_length, embedding_dim)
sentence_tensor = torch.from_numpy(sentence_array).float()
attention_tensor = torch.FloatTensor([[0.3, 0.4, 0.1, 0, 1.2]])
aggregated_array = util.weighted_sum(sentence_tensor, attention_tensor).data.numpy()
assert aggregated_array.shape == (batch_size, embedding_dim)
expected_array = (
0.3 * sentence_array[0, 0]
+ 0.4 * sentence_array[0, 1]
+ 0.1 * sentence_array[0, 2]
+ 0.0 * sentence_array[0, 3]
+ 1.2 * sentence_array[0, 4]
)
numpy.testing.assert_almost_equal(aggregated_array, [expected_array], decimal=5)
示例2: test_weighted_sum_handles_higher_order_input
# 需要導入模塊: from allennlp.nn import util [as 別名]
# 或者: from allennlp.nn.util import weighted_sum [as 別名]
def test_weighted_sum_handles_higher_order_input(self):
batch_size = 1
length_1 = 5
length_2 = 6
length_3 = 2
embedding_dim = 4
sentence_array = numpy.random.rand(batch_size, length_1, length_2, length_3, embedding_dim)
attention_array = numpy.random.rand(batch_size, length_1, length_2, length_3)
sentence_tensor = torch.from_numpy(sentence_array).float()
attention_tensor = torch.from_numpy(attention_array).float()
aggregated_array = util.weighted_sum(sentence_tensor, attention_tensor).data.numpy()
assert aggregated_array.shape == (batch_size, length_1, length_2, embedding_dim)
expected_array = (
attention_array[0, 3, 2, 0] * sentence_array[0, 3, 2, 0]
+ attention_array[0, 3, 2, 1] * sentence_array[0, 3, 2, 1]
)
numpy.testing.assert_almost_equal(aggregated_array[0, 3, 2], expected_array, decimal=5)
示例3: test_weighted_sum_handles_uneven_higher_order_input
# 需要導入模塊: from allennlp.nn import util [as 別名]
# 或者: from allennlp.nn.util import weighted_sum [as 別名]
def test_weighted_sum_handles_uneven_higher_order_input(self):
batch_size = 1
length_1 = 5
length_2 = 6
length_3 = 2
embedding_dim = 4
sentence_array = numpy.random.rand(batch_size, length_3, embedding_dim)
attention_array = numpy.random.rand(batch_size, length_1, length_2, length_3)
sentence_tensor = torch.from_numpy(sentence_array).float()
attention_tensor = torch.from_numpy(attention_array).float()
aggregated_array = util.weighted_sum(sentence_tensor, attention_tensor).data.numpy()
assert aggregated_array.shape == (batch_size, length_1, length_2, embedding_dim)
for i in range(length_1):
for j in range(length_2):
expected_array = (
attention_array[0, i, j, 0] * sentence_array[0, 0]
+ attention_array[0, i, j, 1] * sentence_array[0, 1]
)
numpy.testing.assert_almost_equal(
aggregated_array[0, i, j], expected_array, decimal=5
)
示例4: test_weighted_sum_handles_3d_attention_with_3d_matrix
# 需要導入模塊: from allennlp.nn import util [as 別名]
# 或者: from allennlp.nn.util import weighted_sum [as 別名]
def test_weighted_sum_handles_3d_attention_with_3d_matrix(self):
batch_size = 1
length_1 = 5
length_2 = 2
embedding_dim = 4
sentence_array = numpy.random.rand(batch_size, length_2, embedding_dim)
attention_array = numpy.random.rand(batch_size, length_1, length_2)
sentence_tensor = torch.from_numpy(sentence_array).float()
attention_tensor = torch.from_numpy(attention_array).float()
aggregated_array = util.weighted_sum(sentence_tensor, attention_tensor).data.numpy()
assert aggregated_array.shape == (batch_size, length_1, embedding_dim)
for i in range(length_1):
expected_array = (
attention_array[0, i, 0] * sentence_array[0, 0]
+ attention_array[0, i, 1] * sentence_array[0, 1]
)
numpy.testing.assert_almost_equal(aggregated_array[0, i], expected_array, decimal=5)
示例5: attend_on_sentence
# 需要導入模塊: from allennlp.nn import util [as 別名]
# 或者: from allennlp.nn.util import weighted_sum [as 別名]
def attend_on_sentence(self,
query ,
encoder_outputs ,
encoder_output_mask ) :
u"""
This method is almost identical to ``WikiTablesDecoderStep.attend_on_question``. We just
don't return the attention weights.
Given a query (which is typically the decoder hidden state), compute an attention over the
output of the sentence encoder, and return a weighted sum of the sentence representations
given this attention. We also return the attention weights themselves.
This is a simple computation, but we have it as a separate method so that the ``forward``
method on the main parser module can call it on the initial hidden state, to simplify the
logic in ``take_step``.
"""
# (group_size, sentence_length)
sentence_attention_weights = self._input_attention(query,
encoder_outputs,
encoder_output_mask)
# (group_size, encoder_output_dim)
attended_sentence = nn_util.weighted_sum(encoder_outputs, sentence_attention_weights)
return attended_sentence
示例6: attend_on_question
# 需要導入模塊: from allennlp.nn import util [as 別名]
# 或者: from allennlp.nn.util import weighted_sum [as 別名]
def attend_on_question(self,
query ,
encoder_outputs ,
encoder_output_mask ) :
u"""
Given a query (which is typically the decoder hidden state), compute an attention over the
output of the question encoder, and return a weighted sum of the question representations
given this attention. We also return the attention weights themselves.
This is a simple computation, but we have it as a separate method so that the ``forward``
method on the main parser module can call it on the initial hidden state, to simplify the
logic in ``take_step``.
"""
# (group_size, question_length)
question_attention_weights = self._input_attention(query,
encoder_outputs,
encoder_output_mask)
# (group_size, encoder_output_dim)
attended_question = util.weighted_sum(encoder_outputs, question_attention_weights)
return attended_question, question_attention_weights
示例7: test_weighted_sum_handles_uneven_higher_order_input
# 需要導入模塊: from allennlp.nn import util [as 別名]
# 或者: from allennlp.nn.util import weighted_sum [as 別名]
def test_weighted_sum_handles_uneven_higher_order_input(self):
batch_size = 1
length_1 = 5
length_2 = 6
length_3 = 2
embedding_dim = 4
sentence_array = numpy.random.rand(batch_size, length_3, embedding_dim)
attention_array = numpy.random.rand(batch_size, length_1, length_2, length_3)
sentence_tensor = torch.from_numpy(sentence_array).float()
attention_tensor = torch.from_numpy(attention_array).float()
aggregated_array = util.weighted_sum(sentence_tensor, attention_tensor).data.numpy()
assert aggregated_array.shape == (batch_size, length_1, length_2, embedding_dim)
for i in range(length_1):
for j in range(length_2):
expected_array = (attention_array[0, i, j, 0] * sentence_array[0, 0] +
attention_array[0, i, j, 1] * sentence_array[0, 1])
numpy.testing.assert_almost_equal(aggregated_array[0, i, j], expected_array,
decimal=5)
示例8: test_weighted_sum_handles_3d_attention_with_3d_matrix
# 需要導入模塊: from allennlp.nn import util [as 別名]
# 或者: from allennlp.nn.util import weighted_sum [as 別名]
def test_weighted_sum_handles_3d_attention_with_3d_matrix(self):
batch_size = 1
length_1 = 5
length_2 = 2
embedding_dim = 4
sentence_array = numpy.random.rand(batch_size, length_2, embedding_dim)
attention_array = numpy.random.rand(batch_size, length_1, length_2)
sentence_tensor = torch.from_numpy(sentence_array).float()
attention_tensor = torch.from_numpy(attention_array).float()
aggregated_array = util.weighted_sum(sentence_tensor, attention_tensor).data.numpy()
assert aggregated_array.shape == (batch_size, length_1, embedding_dim)
for i in range(length_1):
expected_array = (attention_array[0, i, 0] * sentence_array[0, 0] +
attention_array[0, i, 1] * sentence_array[0, 1])
numpy.testing.assert_almost_equal(aggregated_array[0, i], expected_array,
decimal=5)
示例9: attend_on_question
# 需要導入模塊: from allennlp.nn import util [as 別名]
# 或者: from allennlp.nn.util import weighted_sum [as 別名]
def attend_on_question(
self, query: torch.Tensor, encoder_outputs: torch.Tensor, encoder_output_mask: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Given a query (which is typically the decoder hidden state), compute an attention over the
output of the question encoder, and return a weighted sum of the question representations
given this attention. We also return the attention weights themselves.
This is a simple computation, but we have it as a separate method so that the ``forward``
method on the main parser module can call it on the initial hidden state, to simplify the
logic in ``take_step``.
"""
# (group_size, question_length)
question_attention_weights = self._input_attention(
query, encoder_outputs, encoder_output_mask
)
# (group_size, encoder_output_dim)
attended_question = util.weighted_sum(encoder_outputs, question_attention_weights)
return attended_question, question_attention_weights
示例10: forward
# 需要導入模塊: from allennlp.nn import util [as 別名]
# 或者: from allennlp.nn.util import weighted_sum [as 別名]
def forward(
self,
sequence_tensor: torch.FloatTensor,
span_indices: torch.LongTensor,
span_indices_mask: torch.BoolTensor = None,
) -> torch.FloatTensor:
# shape (batch_size, sequence_length, 1)
global_attention_logits = self._global_attention(sequence_tensor)
# shape (batch_size, sequence_length, embedding_dim + 1)
concat_tensor = torch.cat([sequence_tensor, global_attention_logits], -1)
concat_output, span_mask = util.batched_span_select(concat_tensor, span_indices)
# Shape: (batch_size, num_spans, max_batch_span_width, embedding_dim)
span_embeddings = concat_output[:, :, :, :-1]
# Shape: (batch_size, num_spans, max_batch_span_width)
span_attention_logits = concat_output[:, :, :, -1]
# Shape: (batch_size, num_spans, max_batch_span_width)
span_attention_weights = util.masked_softmax(span_attention_logits, span_mask)
# Do a weighted sum of the embedded spans with
# respect to the normalised attention distributions.
# Shape: (batch_size, num_spans, embedding_dim)
attended_text_embeddings = util.weighted_sum(span_embeddings, span_attention_weights)
if span_indices_mask is not None:
# Above we were masking the widths of spans with respect to the max
# span width in the batch. Here we are masking the spans which were
# originally passed in as padding.
return attended_text_embeddings * span_indices_mask.unsqueeze(-1)
return attended_text_embeddings
示例11: test_weighted_sum_works_on_simple_input
# 需要導入模塊: from allennlp.nn import util [as 別名]
# 或者: from allennlp.nn.util import weighted_sum [as 別名]
def test_weighted_sum_works_on_simple_input(self):
batch_size = 1
sentence_length = 5
embedding_dim = 4
sentence_array = numpy.random.rand(batch_size, sentence_length, embedding_dim)
sentence_tensor = torch.from_numpy(sentence_array).float()
attention_tensor = torch.FloatTensor([[.3, .4, .1, 0, 1.2]])
aggregated_array = util.weighted_sum(sentence_tensor, attention_tensor).data.numpy()
assert aggregated_array.shape == (batch_size, embedding_dim)
expected_array = (0.3 * sentence_array[0, 0] +
0.4 * sentence_array[0, 1] +
0.1 * sentence_array[0, 2] +
0.0 * sentence_array[0, 3] +
1.2 * sentence_array[0, 4])
numpy.testing.assert_almost_equal(aggregated_array, [expected_array], decimal=5)
示例12: _decoder_step
# 需要導入模塊: from allennlp.nn import util [as 別名]
# 或者: from allennlp.nn.util import weighted_sum [as 別名]
def _decoder_step(
self,
last_predictions: torch.Tensor,
selective_weights: torch.Tensor,
state: Dict[str, torch.Tensor],
) -> Dict[str, torch.Tensor]:
# shape: (group_size, max_input_sequence_length, encoder_output_dim)
encoder_outputs_mask = state["source_mask"]
# shape: (group_size, target_embedding_dim)
embedded_input = self._target_embedder(last_predictions)
# shape: (group_size, max_input_sequence_length)
attentive_weights = self._attention(
state["decoder_hidden"], state["encoder_outputs"], encoder_outputs_mask
)
# shape: (group_size, encoder_output_dim)
attentive_read = util.weighted_sum(state["encoder_outputs"], attentive_weights)
# shape: (group_size, encoder_output_dim)
selective_read = util.weighted_sum(
state["encoder_outputs"][:, 1:-1], selective_weights
)
# shape: (group_size, target_embedding_dim + encoder_output_dim * 2)
decoder_input = torch.cat((embedded_input, attentive_read, selective_read), -1)
# shape: (group_size, decoder_input_dim)
projected_decoder_input = self._input_projection_layer(decoder_input)
state["decoder_hidden"], state["decoder_context"] = self._decoder_cell(
projected_decoder_input, (state["decoder_hidden"], state["decoder_context"])
)
return state
示例13: forward
# 需要導入模塊: from allennlp.nn import util [as 別名]
# 或者: from allennlp.nn.util import weighted_sum [as 別名]
def forward(self, tokens , mask ): # pylint: disable=arguments-differ
batch_size, sequence_length, _ = tokens.size()
# Shape: (batch_size, sequence_length, sequence_length)
similarity_matrix = self._matrix_attention(tokens, tokens)
if self._num_attention_heads > 1:
# In this case, the similarity matrix actually has shape
# (batch_size, sequence_length, sequence_length, num_heads). To make the rest of the
# logic below easier, we'll permute this to
# (batch_size, sequence_length, num_heads, sequence_length).
similarity_matrix = similarity_matrix.permute(0, 1, 3, 2)
# Shape: (batch_size, sequence_length, [num_heads,] sequence_length)
intra_sentence_attention = util.last_dim_softmax(similarity_matrix.contiguous(), mask)
# Shape: (batch_size, sequence_length, projection_dim)
output_token_representation = self._projection(tokens)
if self._num_attention_heads > 1:
# We need to split and permute the output representation to be
# (batch_size, num_heads, sequence_length, projection_dim / num_heads), so that we can
# do a proper weighted sum with `intra_sentence_attention`.
shape = list(output_token_representation.size())
new_shape = shape[:-1] + [self._num_attention_heads, -1]
# Shape: (batch_size, sequence_length, num_heads, projection_dim / num_heads)
output_token_representation = output_token_representation.view(*new_shape)
# Shape: (batch_size, num_heads, sequence_length, projection_dim / num_heads)
output_token_representation = output_token_representation.permute(0, 2, 1, 3)
# Shape: (batch_size, sequence_length, [num_heads,] projection_dim [/ num_heads])
attended_sentence = util.weighted_sum(output_token_representation,
intra_sentence_attention)
if self._num_attention_heads > 1:
# Here we concatenate the weighted representation for each head. We'll accomplish this
# just with a resize.
# Shape: (batch_size, sequence_length, projection_dim)
attended_sentence = attended_sentence.view(batch_size, sequence_length, -1)
# Shape: (batch_size, sequence_length, combination_dim)
combined_tensors = util.combine_tensors(self._combination, [tokens, attended_sentence])
return self._output_projection(combined_tensors)
示例14: _prepare_decode_step_input
# 需要導入模塊: from allennlp.nn import util [as 別名]
# 或者: from allennlp.nn.util import weighted_sum [as 別名]
def _prepare_decode_step_input(self,
input_indices ,
decoder_hidden_state = None,
encoder_outputs = None,
encoder_outputs_mask = None) :
u"""
Given the input indices for the current timestep of the decoder, and all the encoder
outputs, compute the input at the current timestep. Note: This method is agnostic to
whether the indices are gold indices or the predictions made by the decoder at the last
timestep. So, this can be used even if we're doing some kind of scheduled sampling.
If we're not using attention, the output of this method is just an embedding of the input
indices. If we are, the output will be a concatentation of the embedding and an attended
average of the encoder inputs.
Parameters
----------
input_indices : torch.LongTensor
Indices of either the gold inputs to the decoder or the predicted labels from the
previous timestep.
decoder_hidden_state : torch.LongTensor, optional (not needed if no attention)
Output of from the decoder at the last time step. Needed only if using attention.
encoder_outputs : torch.LongTensor, optional (not needed if no attention)
Encoder outputs from all time steps. Needed only if using attention.
encoder_outputs_mask : torch.LongTensor, optional (not needed if no attention)
Masks on encoder outputs. Needed only if using attention.
"""
# input_indices : (batch_size,) since we are processing these one timestep at a time.
# (batch_size, target_embedding_dim)
embedded_input = self._target_embedder(input_indices)
if self._attention_function:
# encoder_outputs : (batch_size, input_sequence_length, encoder_output_dim)
# Ensuring mask is also a FloatTensor. Or else the multiplication within attention will
# complain.
encoder_outputs_mask = encoder_outputs_mask.float()
# (batch_size, input_sequence_length)
input_weights = self._decoder_attention(decoder_hidden_state, encoder_outputs, encoder_outputs_mask)
# (batch_size, encoder_output_dim)
attended_input = weighted_sum(encoder_outputs, input_weights)
# (batch_size, encoder_output_dim + target_embedding_dim)
return torch.cat((attended_input, embedded_input), -1)
else:
return embedded_input
示例15: compute_location_spans
# 需要導入模塊: from allennlp.nn import util [as 別名]
# 或者: from allennlp.nn.util import weighted_sum [as 別名]
def compute_location_spans(self, contextual_seq_embedding, embedded_sentence_verb_entity, mask):
# # ===============================================================test============================================
# # Layer 5: Span prediction for before and after location
# Shape: (batch_size, passage_length, encoding_dim * 4 + modeling_dim))
batch_size, num_sentences, num_participants, sentence_length, encoder_dim = contextual_seq_embedding.shape
#print("contextual_seq_embedding: ", contextual_seq_embedding.shape)
# size(span_start_input_after): batch_size * num_sentences *
# num_participants * sentence_length * (embedding_size+2+2*seq2seq_output_size)
span_start_input_after = torch.cat([embedded_sentence_verb_entity, contextual_seq_embedding], dim=-1)
#print("span_start_input_after: ", span_start_input_after.shape)
# Shape: (bs, ns , np, sl)
span_start_logits_after = self._span_start_predictor_after(span_start_input_after).squeeze(-1)
#print("span_start_logits_after: ", span_start_logits_after.shape)
# Shape: (bs, ns , np, sl)
span_start_probs_after = util.masked_softmax(span_start_logits_after, mask)
#print("span_start_probs_after: ", span_start_probs_after.shape)
# span_start_representation_after: (bs, ns , np, encoder_dim)
span_start_representation_after = util.weighted_sum(contextual_seq_embedding, span_start_probs_after)
#print("span_start_representation_after: ", span_start_representation_after.shape)
# span_tiled_start_representation_after: (bs, ns , np, sl, 2*seq2seq_output_size)
span_tiled_start_representation_after = span_start_representation_after.unsqueeze(3).expand(batch_size,
num_sentences,
num_participants,
sentence_length,
encoder_dim)
#print("span_tiled_start_representation_after: ", span_tiled_start_representation_after.shape)
# Shape: (batch_size, passage_length, (embedding+2 + encoder_dim + encoder_dim + encoder_dim))
span_end_representation_after = torch.cat([embedded_sentence_verb_entity,
contextual_seq_embedding,
span_tiled_start_representation_after,
contextual_seq_embedding * span_tiled_start_representation_after],
dim=-1)
#print("span_end_representation_after: ", span_end_representation_after.shape)
# Shape: (batch_size, passage_length, encoding_dim)
encoded_span_end_after = self.time_distributed_encoder_span_end_after(span_end_representation_after, mask)
#print("encoded_span_end_after: ", encoded_span_end_after.shape)
span_end_logits_after = self._span_end_predictor_after(encoded_span_end_after).squeeze(-1)
#print("span_end_logits_after: ", span_end_logits_after.shape)
span_end_probs_after = util.masked_softmax(span_end_logits_after, mask)
#print("span_end_probs_after: ", span_end_probs_after.shape)
span_start_logits_after = util.replace_masked_values(span_start_logits_after, mask, -1e7)
span_end_logits_after = util.replace_masked_values(span_end_logits_after, mask, -1e7)
# Fixme: we should condition this on predicted_action so that we can output '-' when needed
# Fixme: also add a functionality to be able to output '?': we can use span_start_probs_after, span_end_probs_after
best_span_after = self.get_best_span(span_start_logits_after, span_end_logits_after)
#print("best_span_after: ", best_span_after)
return best_span_after, span_start_logits_after, span_end_logits_after