本文整理匯總了Python中allennlp.nn.util.logsumexp方法的典型用法代碼示例。如果您正苦於以下問題:Python util.logsumexp方法的具體用法?Python util.logsumexp怎麽用?Python util.logsumexp使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類allennlp.nn.util
的用法示例。
在下文中一共展示了util.logsumexp方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_logsumexp
# 需要導入模塊: from allennlp.nn import util [as 別名]
# 或者: from allennlp.nn.util import logsumexp [as 別名]
def test_logsumexp(self):
# First a simple example where we add probabilities in log space.
tensor = torch.FloatTensor([[0.4, 0.1, 0.2]])
log_tensor = tensor.log()
log_summed = util.logsumexp(log_tensor, dim=-1, keepdim=False)
assert_almost_equal(log_summed.exp().data.numpy(), [0.7])
log_summed = util.logsumexp(log_tensor, dim=-1, keepdim=True)
assert_almost_equal(log_summed.exp().data.numpy(), [[0.7]])
# Then some more atypical examples, and making sure this will work with how we handle
# log masks.
tensor = torch.FloatTensor([[float("-inf"), 20.0]])
assert_almost_equal(util.logsumexp(tensor).data.numpy(), [20.0])
tensor = torch.FloatTensor([[-200.0, 20.0]])
assert_almost_equal(util.logsumexp(tensor).data.numpy(), [20.0])
tensor = torch.FloatTensor([[20.0, 20.0], [-200.0, 200.0]])
assert_almost_equal(util.logsumexp(tensor, dim=0).data.numpy(), [20.0, 200.0])
示例2: decode
# 需要導入模塊: from allennlp.nn import util [as 別名]
# 或者: from allennlp.nn.util import logsumexp [as 別名]
def decode(self,
initial_state ,
decode_step ,
supervision ) :
targets, target_mask = supervision
# If self._beam_size is not set, we use a beam size that ensures we keep all of the
# sequences.
beam_size = self._beam_size or targets.size(1)
beam_search = ConstrainedBeamSearch(beam_size, targets, target_mask)
finished_states = beam_search.search(initial_state, decode_step)
loss = 0
for instance_states in list(finished_states.values()):
scores = [state.score[0].view(-1) for state in instance_states]
loss += -util.logsumexp(torch.cat(scores))
return {u'loss': loss / len(finished_states)}
示例3: test_logsumexp
# 需要導入模塊: from allennlp.nn import util [as 別名]
# 或者: from allennlp.nn.util import logsumexp [as 別名]
def test_logsumexp(self):
# First a simple example where we add probabilities in log space.
tensor = torch.FloatTensor([[.4, .1, .2]])
log_tensor = tensor.log()
log_summed = util.logsumexp(log_tensor, dim=-1, keepdim=False)
assert_almost_equal(log_summed.exp().data.numpy(), [.7])
log_summed = util.logsumexp(log_tensor, dim=-1, keepdim=True)
assert_almost_equal(log_summed.exp().data.numpy(), [[.7]])
# Then some more atypical examples, and making sure this will work with how we handle
# log masks.
tensor = torch.FloatTensor([[float(u'-inf'), 20.0]])
assert_almost_equal(util.logsumexp(tensor).data.numpy(), [20.0])
tensor = torch.FloatTensor([[-200.0, 20.0]])
assert_almost_equal(util.logsumexp(tensor).data.numpy(), [20.0])
tensor = torch.FloatTensor([[20.0, 20.0], [-200.0, 200.0]])
assert_almost_equal(util.logsumexp(tensor, dim=0).data.numpy(), [20.0, 200.0])
示例4: decode
# 需要導入模塊: from allennlp.nn import util [as 別名]
# 或者: from allennlp.nn.util import logsumexp [as 別名]
def decode(
self,
initial_state: State,
transition_function: TransitionFunction,
supervision: Tuple[torch.Tensor, torch.Tensor],
) -> Dict[str, torch.Tensor]:
targets, target_mask = supervision
beam_search = ConstrainedBeamSearch(self._beam_size, targets, target_mask)
finished_states: Dict[int, List[State]] = beam_search.search(
initial_state, transition_function
)
loss = 0
for instance_states in finished_states.values():
scores = [state.score[0].view(-1) for state in instance_states]
loss += -util.logsumexp(torch.cat(scores))
return {"loss": loss / len(finished_states)}
示例5: _input_likelihood
# 需要導入模塊: from allennlp.nn import util [as 別名]
# 或者: from allennlp.nn.util import logsumexp [as 別名]
def _input_likelihood(self, logits: torch.Tensor, mask: torch.BoolTensor) -> torch.Tensor:
"""
Computes the (batch_size,) denominator term for the log-likelihood, which is the
sum of the likelihoods across all possible state sequences.
"""
batch_size, sequence_length, num_tags = logits.size()
# Transpose batch size and sequence dimensions
mask = mask.transpose(0, 1).contiguous()
logits = logits.transpose(0, 1).contiguous()
# Initial alpha is the (batch_size, num_tags) tensor of likelihoods combining the
# transitions to the initial states and the logits for the first timestep.
if self.include_start_end_transitions:
alpha = self.start_transitions.view(1, num_tags) + logits[0]
else:
alpha = logits[0]
# For each i we compute logits for the transitions from timestep i-1 to timestep i.
# We do so in a (batch_size, num_tags, num_tags) tensor where the axes are
# (instance, current_tag, next_tag)
for i in range(1, sequence_length):
# The emit scores are for time i ("next_tag") so we broadcast along the current_tag axis.
emit_scores = logits[i].view(batch_size, 1, num_tags)
# Transition scores are (current_tag, next_tag) so we broadcast along the instance axis.
transition_scores = self.transitions.view(1, num_tags, num_tags)
# Alpha is for the current_tag, so we broadcast along the next_tag axis.
broadcast_alpha = alpha.view(batch_size, num_tags, 1)
# Add all the scores together and logexp over the current_tag axis.
inner = broadcast_alpha + emit_scores + transition_scores
# In valid positions (mask == True) we want to take the logsumexp over the current_tag dimension
# of `inner`. Otherwise (mask == False) we want to retain the previous alpha.
alpha = util.logsumexp(inner, 1) * mask[i].view(batch_size, 1) + alpha * (
~mask[i]
).view(batch_size, 1)
# Every sequence needs to end with a transition to the stop_tag.
if self.include_start_end_transitions:
stops = alpha + self.end_transitions.view(1, num_tags)
else:
stops = alpha
# Finally we log_sum_exp along the num_tags dim, result is (batch_size,)
return util.logsumexp(stops)
示例6: _input_likelihood
# 需要導入模塊: from allennlp.nn import util [as 別名]
# 或者: from allennlp.nn.util import logsumexp [as 別名]
def _input_likelihood(self, logits , mask ) :
u"""
Computes the (batch_size,) denominator term for the log-likelihood, which is the
sum of the likelihoods across all possible state sequences.
"""
batch_size, sequence_length, num_tags = logits.size()
# Transpose batch size and sequence dimensions
mask = mask.float().transpose(0, 1).contiguous()
logits = logits.transpose(0, 1).contiguous()
# Initial alpha is the (batch_size, num_tags) tensor of likelihoods combining the
# transitions to the initial states and the logits for the first timestep.
if self.include_start_end_transitions:
alpha = self.start_transitions.view(1, num_tags) + logits[0]
else:
alpha = logits[0]
# For each i we compute logits for the transitions from timestep i-1 to timestep i.
# We do so in a (batch_size, num_tags, num_tags) tensor where the axes are
# (instance, current_tag, next_tag)
for i in range(1, sequence_length):
# The emit scores are for time i ("next_tag") so we broadcast along the current_tag axis.
emit_scores = logits[i].view(batch_size, 1, num_tags)
# Transition scores are (current_tag, next_tag) so we broadcast along the instance axis.
transition_scores = self.transitions.view(1, num_tags, num_tags)
# Alpha is for the current_tag, so we broadcast along the next_tag axis.
broadcast_alpha = alpha.view(batch_size, num_tags, 1)
# Add all the scores together and logexp over the current_tag axis
inner = broadcast_alpha + emit_scores + transition_scores
# In valid positions (mask == 1) we want to take the logsumexp over the current_tag dimension
# of ``inner``. Otherwise (mask == 0) we want to retain the previous alpha.
alpha = (util.logsumexp(inner, 1) * mask[i].view(batch_size, 1) +
alpha * (1 - mask[i]).view(batch_size, 1))
# Every sequence needs to end with a transition to the stop_tag.
if self.include_start_end_transitions:
stops = alpha + self.end_transitions.view(1, num_tags)
else:
stops = alpha
# Finally we log_sum_exp along the num_tags dim, result is (batch_size,)
return util.logsumexp(stops)
示例7: decode
# 需要導入模塊: from allennlp.nn import util [as 別名]
# 或者: from allennlp.nn.util import logsumexp [as 別名]
def decode(self,
initial_state: DecoderState,
decode_step: DecoderStep,
supervision: Tuple[torch.Tensor, torch.Tensor],
# instance_score has shape : batch_size, score of the instance
instance_score=None) -> Dict[str, torch.Tensor]:
targets, target_mask = supervision
allowed_transitions = self._create_allowed_transitions(targets, target_mask)
finished_states = []
states = [initial_state]
step_num = 0
while states:
step_num += 1
next_states = []
# We group together all current states to get more efficient (batched) computation.
grouped_state = states[0].combine_states(states)
allowed_actions = self._get_allowed_actions(grouped_state, allowed_transitions)
# This will store a set of (batch_index, action_history) tuples, and we'll check it
# against the allowed actions to make sure we're actually scoring all of the actions we
# are supposed to.
actions_taken: Set[Tuple[int, Tuple[int, ...]]] = set()
for next_state in decode_step.take_step(grouped_state, allowed_actions=allowed_actions, max_actions=20):
actions_taken.add((next_state.batch_indices[0], ubertuple(next_state.action_history[0])))
if next_state.is_finished():
finished_states.append(next_state)
else:
next_states.append(next_state)
states = next_states
# self._check_all_actions_taken(actions_taken, grouped_state, allowed_actions)
# This is a dictionary of lists - for each batch instance, we want the score of all
# finished states. So this has shape (batch_size, num_target_action_sequences), though
# it's not actually a tensor, because different batch instance might have different numbers
# of finished states.
batch_scores = self._group_scores_by_batch(finished_states)
loss = 0
for scores in batch_scores.values(): # we don't care about the batch index, just the scores
# Assumes: there is always batch size of 1 (at least until EMNLP'18 submission)
# if instance_score is a float, it is a dummy passed by the model.
if not instance_score or type(instance_score) == float:
loss += -util.logsumexp(torch.cat(scores))
else:
loss += instance_score[0] * -util.logsumexp(torch.cat(scores))
# Denominator should not be zero.
output_dict = {}
output_dict['loss'] = loss / (len(batch_scores) + 1e-12)
output_dict['finished_states'] = finished_states
return output_dict