當前位置: 首頁>>代碼示例>>Python>>正文


Python Activation.by_name方法代碼示例

本文整理匯總了Python中allennlp.nn.Activation.by_name方法的典型用法代碼示例。如果您正苦於以下問題:Python Activation.by_name方法的具體用法?Python Activation.by_name怎麽用?Python Activation.by_name使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在allennlp.nn.Activation的用法示例。


在下文中一共展示了Activation.by_name方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from allennlp.nn import Activation [as 別名]
# 或者: from allennlp.nn.Activation import by_name [as 別名]
def __init__(
        self,
        matrix_1_dim: int,
        matrix_2_dim: int,
        activation: Activation = None,
        use_input_biases: bool = False,
        label_dim: int = 1,
    ) -> None:
        super().__init__()
        if use_input_biases:
            matrix_1_dim += 1
            matrix_2_dim += 1

        if label_dim == 1:
            self._weight_matrix = Parameter(torch.Tensor(matrix_1_dim, matrix_2_dim))
        else:
            self._weight_matrix = Parameter(torch.Tensor(label_dim, matrix_1_dim, matrix_2_dim))

        self._bias = Parameter(torch.Tensor(1))
        self._activation = activation or Activation.by_name("linear")()
        self._use_input_biases = use_input_biases
        self.reset_parameters() 
開發者ID:allenai,項目名稱:allennlp,代碼行數:24,代碼來源:bilinear_matrix_attention.py

示例2: test_feedforward_encoder_exactly_match_feedforward_each_item

# 需要導入模塊: from allennlp.nn import Activation [as 別名]
# 或者: from allennlp.nn.Activation import by_name [as 別名]
def test_feedforward_encoder_exactly_match_feedforward_each_item(self):
        feedforward = FeedForward(
            input_dim=10, num_layers=1, hidden_dims=10, activations=Activation.by_name("linear")()
        )
        encoder = FeedForwardEncoder(feedforward)
        tensor = torch.randn([2, 3, 10])
        output = encoder(tensor)
        target = feedforward(tensor)
        numpy.testing.assert_array_almost_equal(
            target.detach().cpu().numpy(), output.detach().cpu().numpy()
        )

        # mask should work
        mask = torch.tensor([[True, True, True], [True, False, False]])
        output = encoder(tensor, mask)
        target = feedforward(tensor) * mask.unsqueeze(dim=-1).float()
        numpy.testing.assert_array_almost_equal(
            target.detach().cpu().numpy(), output.detach().cpu().numpy()
        ) 
開發者ID:allenai,項目名稱:allennlp,代碼行數:21,代碼來源:feedforward_encoder_test.py

示例3: from_params

# 需要導入模塊: from allennlp.nn import Activation [as 別名]
# 或者: from allennlp.nn.Activation import by_name [as 別名]
def from_params(cls, params        ):
        input_dim = params.pop_int(u'input_dim')
        num_layers = params.pop_int(u'num_layers')
        hidden_dims = params.pop(u'hidden_dims')
        activations = params.pop(u'activations')
        dropout = params.pop(u'dropout', 0.0)
        if isinstance(activations, list):
            activations = [Activation.by_name(name)() for name in activations]
        else:
            activations = Activation.by_name(activations)()
        params.assert_empty(cls.__name__)
        return cls(input_dim=input_dim,
                   num_layers=num_layers,
                   hidden_dims=hidden_dims,
                   activations=activations,
                   dropout=dropout) 
開發者ID:plasticityai,項目名稱:magnitude,代碼行數:18,代碼來源:feedforward.py

示例4: __init__

# 需要導入模塊: from allennlp.nn import Activation [as 別名]
# 或者: from allennlp.nn.Activation import by_name [as 別名]
def __init__(
        self,
        encoder_output_dim: int,
        action_embedding_dim: int,
        input_attention: Attention,
        activation: Activation = Activation.by_name("relu")(),
        add_action_bias: bool = True,
        dropout: float = 0.0,
    ) -> None:
        super().__init__(
            encoder_output_dim=encoder_output_dim,
            action_embedding_dim=action_embedding_dim,
            input_attention=input_attention,
            activation=activation,
            add_action_bias=add_action_bias,
            dropout=dropout,
        )
        # See the class docstring for a description of what this does.
        self._checklist_multiplier = Parameter(torch.FloatTensor([1.0])) 
開發者ID:allenai,項目名稱:allennlp-semparse,代碼行數:21,代碼來源:coverage_transition_function.py

示例5: __init__

# 需要導入模塊: from allennlp.nn import Activation [as 別名]
# 或者: from allennlp.nn.Activation import by_name [as 別名]
def __init__(self,
                 tensor_1_dim: int,
                 tensor_2_dim: int,
                 combination: str = 'x,y',
                 activation: Activation = Activation.by_name('linear')()) -> None:
        super(LinearExtenedSimilarity, self).__init__()
        self._combination = combination
        combined_dim = get_combined_dim(combination, [tensor_1_dim, tensor_2_dim])
        self._weight_vector = Parameter(torch.Tensor(combined_dim))
        self._bias = Parameter(torch.Tensor(1))
        self._activation = activation
        self.reset_parameters() 
開發者ID:allenai,項目名稱:OpenBookQA,代碼行數:14,代碼來源:linear_extended.py

示例6: from_params

# 需要導入模塊: from allennlp.nn import Activation [as 別名]
# 或者: from allennlp.nn.Activation import by_name [as 別名]
def from_params(cls, params: Params) -> 'LinearExtenedSimilarity':
        tensor_1_dim = params.pop_int("tensor_1_dim")
        tensor_2_dim = params.pop_int("tensor_2_dim")
        combination = params.pop("combination", "x,y")
        activation = Activation.by_name(params.pop("activation", "linear"))()
        params.assert_empty(cls.__name__)
        return cls(tensor_1_dim=tensor_1_dim,
                   tensor_2_dim=tensor_2_dim,
                   combination=combination,
                   activation=activation) 
開發者ID:allenai,項目名稱:OpenBookQA,代碼行數:12,代碼來源:linear_extended.py

示例7: from_params

# 需要導入模塊: from allennlp.nn import Activation [as 別名]
# 或者: from allennlp.nn.Activation import by_name [as 別名]
def from_params(cls, params: Params) -> 'LinearTransformSumReprCombination':
        tensor1_dim = params.get("tensor_1_dim", 0)
        tensor2_dim = params.get("tensor_2_dim", 0)
        output_dim = params.get("output_dim", 0)

        activation = Activation.by_name(params.get("activation", "linear"))()
        return cls(tensor1_dim, tensor2_dim, output_dim, activation) 
開發者ID:allenai,項目名稱:OpenBookQA,代碼行數:9,代碼來源:linear_transform_sum_repr_combination.py

示例8: from_params

# 需要導入模塊: from allennlp.nn import Activation [as 別名]
# 或者: from allennlp.nn.Activation import by_name [as 別名]
def from_params(cls, params: Params) -> 'WeightedSumReprCombination':
        keep_context_threshold = params.get("keep_context_threshold", 0.5)
        tensor1_dim = params.get("tensor1_dim", 0)
        tensor2_dim = params.get("tensor2_dim", 0)
        output_dim = params.get("output_dim", 0)

        activation = Activation.by_name(params.get("activation", "linear"))()
        return cls(tensor1_dim, tensor2_dim, output_dim, keep_context_threshold, activation) 
開發者ID:allenai,項目名稱:OpenBookQA,代碼行數:10,代碼來源:weighted_sum_repr_combination.py

示例9: __init__

# 需要導入模塊: from allennlp.nn import Activation [as 別名]
# 或者: from allennlp.nn.Activation import by_name [as 別名]
def __init__(
        self,
        vector_dim: int,
        matrix_dim: int,
        activation: Activation = None,
        normalize: bool = True,
    ) -> None:
        super().__init__(normalize)
        self._weight_matrix = Parameter(torch.Tensor(vector_dim, matrix_dim))
        self._bias = Parameter(torch.Tensor(1))
        self._activation = activation or Activation.by_name("linear")()
        self.reset_parameters() 
開發者ID:allenai,項目名稱:allennlp,代碼行數:14,代碼來源:bilinear_attention.py

示例10: __init__

# 需要導入模塊: from allennlp.nn import Activation [as 別名]
# 或者: from allennlp.nn.Activation import by_name [as 別名]
def __init__(
        self,
        embedding_dim: int,
        num_filters: int,
        ngram_filter_sizes: Tuple[int, ...] = (2, 3, 4, 5),
        conv_layer_activation: Activation = None,
        output_dim: Optional[int] = None,
    ) -> None:
        super().__init__()
        self._embedding_dim = embedding_dim
        self._num_filters = num_filters
        self._ngram_filter_sizes = ngram_filter_sizes
        self._activation = conv_layer_activation or Activation.by_name("relu")()
        self._output_dim = output_dim

        self._convolution_layers = [
            Conv1d(
                in_channels=self._embedding_dim,
                out_channels=self._num_filters,
                kernel_size=ngram_size,
            )
            for ngram_size in self._ngram_filter_sizes
        ]
        for i, conv_layer in enumerate(self._convolution_layers):
            self.add_module("conv_layer_%d" % i, conv_layer)

        maxpool_output_dim = self._num_filters * len(self._ngram_filter_sizes)
        if self._output_dim:
            self.projection_layer = Linear(maxpool_output_dim, self._output_dim)
        else:
            self.projection_layer = None
            self._output_dim = maxpool_output_dim 
開發者ID:allenai,項目名稱:allennlp,代碼行數:34,代碼來源:cnn_encoder.py

示例11: test_get_dimension_is_correct

# 需要導入模塊: from allennlp.nn import Activation [as 別名]
# 或者: from allennlp.nn.Activation import by_name [as 別名]
def test_get_dimension_is_correct(self):
        feedforward = FeedForward(
            input_dim=10, num_layers=1, hidden_dims=10, activations=Activation.by_name("linear")()
        )
        encoder = FeedForwardEncoder(feedforward)
        assert encoder.get_input_dim() == feedforward.get_input_dim()
        assert encoder.get_output_dim() == feedforward.get_output_dim() 
開發者ID:allenai,項目名稱:allennlp,代碼行數:9,代碼來源:feedforward_encoder_test.py

示例12: test_init_checks_activation_consistency

# 需要導入模塊: from allennlp.nn import Activation [as 別名]
# 或者: from allennlp.nn.Activation import by_name [as 別名]
def test_init_checks_activation_consistency(self):
        with pytest.raises(ConfigurationError):
            FeedForward(2, 4, 5, [Activation.by_name("relu")(), Activation.by_name("relu")()]) 
開發者ID:allenai,項目名稱:allennlp,代碼行數:5,代碼來源:feedforward_test.py

示例13: __init__

# 需要導入模塊: from allennlp.nn import Activation [as 別名]
# 或者: from allennlp.nn.Activation import by_name [as 別名]
def __init__(self,
                 tensor_1_dim     ,
                 tensor_2_dim     ,
                 combination      = u'x,y',
                 activation             = None)        :
        super(LinearSimilarity, self).__init__()
        self._combination = combination
        combined_dim = util.get_combined_dim(combination, [tensor_1_dim, tensor_2_dim])
        self._weight_vector = Parameter(torch.Tensor(combined_dim))
        self._bias = Parameter(torch.Tensor(1))
        self._activation = activation or Activation.by_name(u'linear')()
        self.reset_parameters() 
開發者ID:plasticityai,項目名稱:magnitude,代碼行數:14,代碼來源:linear.py

示例14: __init__

# 需要導入模塊: from allennlp.nn import Activation [as 別名]
# 或者: from allennlp.nn.Activation import by_name [as 別名]
def __init__(self,
                 tensor_1_dim     ,
                 tensor_2_dim     ,
                 activation             = None)        :
        super(BilinearSimilarity, self).__init__()
        self._weight_matrix = Parameter(torch.Tensor(tensor_1_dim, tensor_2_dim))
        self._bias = Parameter(torch.Tensor(1))
        self._activation = activation or Activation.by_name(u'linear')()
        self.reset_parameters() 
開發者ID:plasticityai,項目名稱:magnitude,代碼行數:11,代碼來源:bilinear.py

示例15: __init__

# 需要導入模塊: from allennlp.nn import Activation [as 別名]
# 或者: from allennlp.nn.Activation import by_name [as 別名]
def __init__(self,
                 vector_dim     ,
                 matrix_dim     ,
                 activation             = None,
                 normalize       = True)        :
        super(BilinearAttention, self).__init__(normalize)
        self._weight_matrix = Parameter(torch.Tensor(vector_dim, matrix_dim))
        self._bias = Parameter(torch.Tensor(1))
        self._activation = activation or Activation.by_name(u'linear')()
        self.reset_parameters() 
開發者ID:plasticityai,項目名稱:magnitude,代碼行數:12,代碼來源:bilinear_attention.py


注:本文中的allennlp.nn.Activation.by_name方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。