當前位置: 首頁>>代碼示例>>Python>>正文


Python time_distributed.TimeDistributed方法代碼示例

本文整理匯總了Python中allennlp.modules.time_distributed.TimeDistributed方法的典型用法代碼示例。如果您正苦於以下問題:Python time_distributed.TimeDistributed方法的具體用法?Python time_distributed.TimeDistributed怎麽用?Python time_distributed.TimeDistributed使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在allennlp.modules.time_distributed的用法示例。


在下文中一共展示了time_distributed.TimeDistributed方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: forward

# 需要導入模塊: from allennlp.modules import time_distributed [as 別名]
# 或者: from allennlp.modules.time_distributed import TimeDistributed [as 別名]
def forward(self, elmo_tokens: torch.Tensor, word_inputs: torch.Tensor = None) -> torch.Tensor:
        """
        # Parameters

        elmo_tokens : `torch.Tensor`
            Shape `(batch_size, timesteps, 50)` of character ids representing the current batch.
        word_inputs : `torch.Tensor`, optional.
            If you passed a cached vocab, you can in addition pass a tensor of shape
            `(batch_size, timesteps)`, which represent word ids which have been pre-cached.

        # Returns

        `torch.Tensor`
            The ELMo representations for the input sequence, shape
            `(batch_size, timesteps, embedding_dim)`
        """
        elmo_output = self._elmo(elmo_tokens, word_inputs)
        elmo_representations = elmo_output["elmo_representations"][0]
        if self._projection:
            projection = self._projection
            for _ in range(elmo_representations.dim() - 2):
                projection = TimeDistributed(projection)
            elmo_representations = projection(elmo_representations)
        return elmo_representations 
開發者ID:allenai,項目名稱:allennlp,代碼行數:26,代碼來源:elmo_token_embedder.py

示例2: forward

# 需要導入模塊: from allennlp.modules import time_distributed [as 別名]
# 或者: from allennlp.modules.time_distributed import TimeDistributed [as 別名]
def forward(self, inputs):  # pylint: disable=arguments-differ
        original_inputs = inputs
        if original_inputs.dim() > 2:
            inputs = inputs.view(-1, inputs.size(-1))
        embedded = embedding(inputs, self.weight,
                             max_norm=self.max_norm,
                             norm_type=self.norm_type,
                             scale_grad_by_freq=self.scale_grad_by_freq,
                             sparse=self.sparse)
        if original_inputs.dim() > 2:
            view_args = list(original_inputs.size()) + [embedded.size(-1)]
            embedded = embedded.view(*view_args)
        if self._projection:
            projection = self._projection
            for _ in range(embedded.dim() - 2):
                projection = TimeDistributed(projection)
            embedded = projection(embedded)
        return embedded

    # Custom logic requires custom from_params. 
開發者ID:plasticityai,項目名稱:magnitude,代碼行數:22,代碼來源:embedding.py

示例3: __init__

# 需要導入模塊: from allennlp.modules import time_distributed [as 別名]
# 或者: from allennlp.modules.time_distributed import TimeDistributed [as 別名]
def __init__(self, input_dim: int) -> None:
        super().__init__()
        self._input_dim = input_dim
        self._global_attention = TimeDistributed(torch.nn.Linear(input_dim, 1)) 
開發者ID:allenai,項目名稱:allennlp,代碼行數:6,代碼來源:self_attentive_span_extractor.py

示例4: forward

# 需要導入模塊: from allennlp.modules import time_distributed [as 別名]
# 或者: from allennlp.modules.time_distributed import TimeDistributed [as 別名]
def forward(self, tokens: torch.Tensor) -> torch.Tensor:
        # tokens may have extra dimensions (batch_size, d1, ..., dn, sequence_length),
        # but embedding expects (batch_size, sequence_length), so pass tokens to
        # util.combine_initial_dims (which is a no-op if there are no extra dimensions).
        # Remember the original size.
        original_size = tokens.size()
        tokens = util.combine_initial_dims(tokens)

        embedded = embedding(
            tokens,
            self.weight,
            padding_idx=self.padding_index,
            max_norm=self.max_norm,
            norm_type=self.norm_type,
            scale_grad_by_freq=self.scale_grad_by_freq,
            sparse=self.sparse,
        )

        # Now (if necessary) add back in the extra dimensions.
        embedded = util.uncombine_initial_dims(embedded, original_size)

        if self._projection:
            projection = self._projection
            for _ in range(embedded.dim() - 2):
                projection = TimeDistributed(projection)
            embedded = projection(embedded)
        return embedded 
開發者ID:allenai,項目名稱:allennlp,代碼行數:29,代碼來源:embedding.py

示例5: __init__

# 需要導入模塊: from allennlp.modules import time_distributed [as 別名]
# 或者: from allennlp.modules.time_distributed import TimeDistributed [as 別名]
def __init__(self, embedding: Embedding, encoder: Seq2VecEncoder, dropout: float = 0.0) -> None:
        super().__init__()
        self._embedding = TimeDistributed(embedding)
        self._encoder = TimeDistributed(encoder)
        if dropout > 0:
            self._dropout = torch.nn.Dropout(p=dropout)
        else:
            self._dropout = lambda x: x 
開發者ID:allenai,項目名稱:allennlp,代碼行數:10,代碼來源:token_characters_encoder.py

示例6: forward

# 需要導入模塊: from allennlp.modules import time_distributed [as 別名]
# 或者: from allennlp.modules.time_distributed import TimeDistributed [as 別名]
def forward(
        self, text_field_input: TextFieldTensors, num_wrapping_dims: int = 0, **kwargs
    ) -> torch.Tensor:
        if self._token_embedders.keys() != text_field_input.keys():
            message = "Mismatched token keys: %s and %s" % (
                str(self._token_embedders.keys()),
                str(text_field_input.keys()),
            )
            raise ConfigurationError(message)

        embedded_representations = []
        for key in self._ordered_embedder_keys:
            # Note: need to use getattr here so that the pytorch voodoo
            # with submodules works with multiple GPUs.
            embedder = getattr(self, "token_embedder_{}".format(key))
            forward_params = inspect.signature(embedder.forward).parameters
            forward_params_values = {}
            missing_tensor_args = set()
            for param in forward_params.keys():
                if param in kwargs:
                    forward_params_values[param] = kwargs[param]
                else:
                    missing_tensor_args.add(param)

            for _ in range(num_wrapping_dims):
                embedder = TimeDistributed(embedder)

            tensors: Dict[str, torch.Tensor] = text_field_input[key]
            if len(tensors) == 1 and len(missing_tensor_args) == 1:
                # If there's only one tensor argument to the embedder, and we just have one tensor to
                # embed, we can just pass in that tensor, without requiring a name match.
                token_vectors = embedder(list(tensors.values())[0], **forward_params_values)
            else:
                # If there are multiple tensor arguments, we have to require matching names from the
                # TokenIndexer.  I don't think there's an easy way around that.
                token_vectors = embedder(**tensors, **forward_params_values)
            if token_vectors is not None:
                # To handle some very rare use cases, we allow the return value of the embedder to
                # be None; we just skip it in that case.
                embedded_representations.append(token_vectors)
        return torch.cat(embedded_representations, dim=-1) 
開發者ID:allenai,項目名稱:allennlp,代碼行數:43,代碼來源:basic_text_field_embedder.py

示例7: __init__

# 需要導入模塊: from allennlp.modules import time_distributed [as 別名]
# 或者: from allennlp.modules.time_distributed import TimeDistributed [as 別名]
def __init__(self, vocab: Vocabulary,
                 text_field_embedder: TextFieldEmbedder,
                 phrase_probability: FeedForward,
                 edge_probability: FeedForward,
                 premise_encoder: Seq2SeqEncoder,
                 edge_embedding: Embedding,
                 use_encoding_for_node: bool,
                 ignore_edges: bool,
                 attention_similarity: SimilarityFunction,
                 initializer: InitializerApplicator = InitializerApplicator()) -> None:
        super(TreeAttention, self).__init__(vocab)

        self._text_field_embedder = text_field_embedder
        self._premise_encoder = premise_encoder
        self._nodes_attention = SingleTimeDistributed(MatrixAttention(attention_similarity), 0)
        self._num_labels = vocab.get_vocab_size(namespace="labels")
        self._phrase_probability = TimeDistributed(phrase_probability)
        self._ignore_edges = ignore_edges
        if not self._ignore_edges:
            self._num_edges = vocab.get_vocab_size(namespace="edges")
            self._edge_probability = TimeDistributed(edge_probability)
            self._edge_embedding = edge_embedding
        self._use_encoding_for_node = use_encoding_for_node
        self._accuracy = CategoricalAccuracy()
        self._loss = torch.nn.CrossEntropyLoss()
        initializer(self) 
開發者ID:allenai,項目名稱:scitail,代碼行數:28,代碼來源:tree_attention.py

示例8: __init__

# 需要導入模塊: from allennlp.modules import time_distributed [as 別名]
# 或者: from allennlp.modules.time_distributed import TimeDistributed [as 別名]
def __init__(self, embedding: Embedding, encoder: Seq2VecEncoder, dropout: float = 0.0) -> None:
        super(UdifyTokenCharactersEncoder, self).__init__()
        self._embedding = TimeDistributed(embedding)
        self._encoder = TimeDistributed(encoder)
        if dropout > 0:
            self._dropout = torch.nn.Dropout(p=dropout)
        else:
            self._dropout = lambda x: x 
開發者ID:Hyperparticle,項目名稱:udify,代碼行數:10,代碼來源:token_characters_encoder.py

示例9: __init__

# 需要導入模塊: from allennlp.modules import time_distributed [as 別名]
# 或者: from allennlp.modules.time_distributed import TimeDistributed [as 別名]
def __init__(self,
                 input_dim     )        :
        super(SelfAttentiveSpanExtractor, self).__init__()
        self._input_dim = input_dim
        self._global_attention = TimeDistributed(torch.nn.Linear(input_dim, 1)) 
開發者ID:plasticityai,項目名稱:magnitude,代碼行數:7,代碼來源:self_attentive_span_extractor.py

示例10: forward

# 需要導入模塊: from allennlp.modules import time_distributed [as 別名]
# 或者: from allennlp.modules.time_distributed import TimeDistributed [as 別名]
def forward(self, # pylint: disable=arguments-differ
                inputs              ,
                word_inputs               = None)                :
        u"""
        Parameters
        ----------
        inputs: ``torch.Tensor``
            Shape ``(batch_size, timesteps, 50)`` of character ids representing the current batch.
        word_inputs : ``torch.Tensor``, optional.
            If you passed a cached vocab, you can in addition pass a tensor of shape
            ``(batch_size, timesteps)``, which represent word ids which have been pre-cached.

        Returns
        -------
        The ELMo representations for the input sequence, shape
        ``(batch_size, timesteps, embedding_dim)``
        """
        elmo_output = self._elmo(inputs, word_inputs)
        elmo_representations = elmo_output[u'elmo_representations'][0]
        if self._projection:
            projection = self._projection
            for _ in range(elmo_representations.dim() - 2):
                projection = TimeDistributed(projection)
            elmo_representations = projection(elmo_representations)
        return elmo_representations

    # Custom vocab_to_cache logic requires a from_params implementation. 
開發者ID:plasticityai,項目名稱:magnitude,代碼行數:29,代碼來源:elmo_token_embedder.py

示例11: __init__

# 需要導入模塊: from allennlp.modules import time_distributed [as 別名]
# 或者: from allennlp.modules.time_distributed import TimeDistributed [as 別名]
def __init__(self, embedding           , encoder                , dropout        = 0.0)        :
        super(TokenCharactersEncoder, self).__init__()
        self._embedding = TimeDistributed(embedding)
        self._encoder = TimeDistributed(encoder)
        if dropout > 0:
            self._dropout = torch.nn.Dropout(p=dropout)
        else:
            self._dropout = lambda x: x 
開發者ID:plasticityai,項目名稱:magnitude,代碼行數:10,代碼來源:token_characters_encoder.py

示例12: forward

# 需要導入模塊: from allennlp.modules import time_distributed [as 別名]
# 或者: from allennlp.modules.time_distributed import TimeDistributed [as 別名]
def forward(self, text_field_input                         , num_wrapping_dims      = 0)                :
        if list(self._token_embedders.keys()) != list(text_field_input.keys()):
            if not self._allow_unmatched_keys:
                message = u"Mismatched token keys: %s and %s" % (unicode(list(self._token_embedders.keys())),
                                                                unicode(list(text_field_input.keys())))
                raise ConfigurationError(message)
        embedded_representations = []
        keys = sorted(self._token_embedders.keys())
        for key in keys:
            # If we pre-specified a mapping explictly, use that.
            if self._embedder_to_indexer_map is not None:
                tensors = [text_field_input[indexer_key] for
                           indexer_key in self._embedder_to_indexer_map[key]]
            else:
                # otherwise, we assume the mapping between indexers and embedders
                # is bijective and just use the key directly.
                tensors = [text_field_input[key]]
            # Note: need to use getattr here so that the pytorch voodoo
            # with submodules works with multiple GPUs.
            embedder = getattr(self, u'token_embedder_{}'.format(key))
            for _ in range(num_wrapping_dims):
                embedder = TimeDistributed(embedder)
            token_vectors = embedder(*tensors)
            embedded_representations.append(token_vectors)
        return torch.cat(embedded_representations, dim=-1)

    # This is some unusual logic, it needs a custom from_params. 
開發者ID:plasticityai,項目名稱:magnitude,代碼行數:29,代碼來源:basic_text_field_embedder.py

示例13: forward

# 需要導入模塊: from allennlp.modules import time_distributed [as 別名]
# 或者: from allennlp.modules.time_distributed import TimeDistributed [as 別名]
def forward(self, text_field_input: Dict[str, torch.Tensor], num_wrapping_dims: int = 0) -> torch.Tensor:
        if self._token_embedders.keys() != text_field_input.keys():
            if not self._allow_unmatched_keys:
                message = "Mismatched token keys: %s and %s" % (str(self._token_embedders.keys()),
                                                                str(text_field_input.keys()))
                raise ConfigurationError(message)
        embedded_representations = []
        keys = sorted(self._token_embedders.keys())
        for key in keys:
            # If we pre-specified a mapping explictly, use that.
            if self._embedder_to_indexer_map is not None:
                tensors = [text_field_input[indexer_key] for
                           indexer_key in self._embedder_to_indexer_map[key]]
            else:
                # otherwise, we assume the mapping between indexers and embedders
                # is bijective and just use the key directly.
                tensors = [text_field_input[key]]
            # Note: need to use getattr here so that the pytorch voodoo
            # with submodules works with multiple GPUs.
            embedder = getattr(self, 'token_embedder_{}'.format(key))
            for _ in range(num_wrapping_dims):
                embedder = TimeDistributed(embedder)
            token_vectors = embedder(*tensors)
            embedded_representations.append(token_vectors)
        return torch.cat(embedded_representations, dim=-1)

    # This is some unusual logic, it needs a custom from_params. 
開發者ID:jcyk,項目名稱:gtos,代碼行數:29,代碼來源:basic_text_field_embedder.py

示例14: forward

# 需要導入模塊: from allennlp.modules import time_distributed [as 別名]
# 或者: from allennlp.modules.time_distributed import TimeDistributed [as 別名]
def forward(self,  # pylint: disable=arguments-differ
                inputs: torch.Tensor) -> torch.Tensor:
        """
        Parameters
        ----------
        inputs: ``torch.Tensor``
            Shape ``(batch_size, timesteps)`` of character ids representing the current batch.
        Returns
        -------
        The VAMPIRE representations for the input sequence, shape
        ``(batch_size, timesteps, embedding_dim)`` or ``(batch_size, timesteps)``
        depending on whether expand_dim is set to True.
        """
        vae_output = self._vae(inputs)
        embedded = vae_output['vae_representation']
        self._layers = vae_output['layers']
        if self._expand_dim:
            embedded = (embedded.unsqueeze(0)
                        .expand(inputs.shape[1], inputs.shape[0], -1)
                        .permute(1, 0, 2).contiguous())
        if self._projection:
            projection = self._projection
            for _ in range(embedded.dim() - 2):
                projection = TimeDistributed(projection)
            embedded = projection(embedded)
        return embedded

    # Custom vocab_to_cache logic requires a from_params implementation. 
開發者ID:allenai,項目名稱:vampire,代碼行數:30,代碼來源:vampire_token_embedder.py

示例15: __init__

# 需要導入模塊: from allennlp.modules import time_distributed [as 別名]
# 或者: from allennlp.modules.time_distributed import TimeDistributed [as 別名]
def __init__(self, embedding: Embedding, encoder: Seq2VecEncoder, projection_dim: int = None,
                 dropout: float = 0.0) -> None:
        super(TokenCharactersEncoder, self).__init__()
        self._embedding = TimeDistributed(embedding)
        self._encoder = TimeDistributed(encoder)
        self.output_dim = projection_dim or self._encoder._module.get_output_dim()
        if projection_dim:
            self._projection = torch.nn.Linear(self._encoder._module.get_output_dim(), projection_dim)
        else:
            self._projection = lambda x: x
        if dropout > 0:
            self._dropout = torch.nn.Dropout(p=dropout)
        else:
            self._dropout = lambda x: x 
開發者ID:DreamerDeo,項目名稱:HIT-SCIR-CoNLL2019,代碼行數:16,代碼來源:my_token_characters_encoder.py


注:本文中的allennlp.modules.time_distributed.TimeDistributed方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。