本文整理匯總了Python中allennlp.modules.Seq2SeqEncoder方法的典型用法代碼示例。如果您正苦於以下問題:Python modules.Seq2SeqEncoder方法的具體用法?Python modules.Seq2SeqEncoder怎麽用?Python modules.Seq2SeqEncoder使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類allennlp.modules
的用法示例。
在下文中一共展示了modules.Seq2SeqEncoder方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from allennlp import modules [as 別名]
# 或者: from allennlp.modules import Seq2SeqEncoder [as 別名]
def __init__(self,
encoder: Seq2SeqEncoder,
projection_feedforward: FeedForward,
inference_encoder: Seq2SeqEncoder,
output_feedforward: FeedForward,
similarity_function: SimilarityFunction = None,
dropout: float = 0.5) -> None:
super().__init__()
self._encoder = encoder
self._matrix_attention = LegacyMatrixAttention(similarity_function)
self._projection_feedforward = projection_feedforward
self._inference_encoder = inference_encoder
if dropout:
self.dropout = torch.nn.Dropout(dropout)
self.rnn_input_dropout = InputVariationalDropout(dropout)
else:
self.dropout = None
self.rnn_input_dropout = None
self._output_feedforward = output_feedforward
示例2: __init__
# 需要導入模塊: from allennlp import modules [as 別名]
# 或者: from allennlp.modules import Seq2SeqEncoder [as 別名]
def __init__(self, vocab: Vocabulary,
text_field_embedder: TextFieldEmbedder,
text_encoder: Seq2SeqEncoder,
classifier_feedforward: FeedForward,
verbose_metrics: False,
initializer: InitializerApplicator = InitializerApplicator(),
regularizer: Optional[RegularizerApplicator] = None,
) -> None:
super(TextClassifier, self).__init__(vocab, regularizer)
self.text_field_embedder = text_field_embedder
self.num_classes = self.vocab.get_vocab_size("labels")
self.text_encoder = text_encoder
self.classifier_feedforward = classifier_feedforward
self.prediction_layer = torch.nn.Linear(self.classifier_feedforward.get_output_dim() , self.num_classes)
self.label_accuracy = CategoricalAccuracy()
self.label_f1_metrics = {}
self.verbose_metrics = verbose_metrics
for i in range(self.num_classes):
self.label_f1_metrics[vocab.get_token_from_index(index=i, namespace="labels")] = F1Measure(positive_label=i)
self.loss = torch.nn.CrossEntropyLoss()
self.pool = lambda text, mask: util.get_final_encoder_states(text, mask, bidirectional=True)
initializer(self)
示例3: __init__
# 需要導入模塊: from allennlp import modules [as 別名]
# 或者: from allennlp.modules import Seq2SeqEncoder [as 別名]
def __init__(self, vocab: Vocabulary,
text_field_embedder: TextFieldEmbedder,
encoder: Seq2SeqEncoder,
include_start_end_transitions: bool = True,
dropout: Optional[float] = None,
initializer: InitializerApplicator = InitializerApplicator(),
regularizer: Optional[RegularizerApplicator] = None) -> None:
super().__init__(vocab, regularizer)
self.label_namespace = 'labels'
self.num_tags = self.vocab.get_vocab_size(self.label_namespace)
# encode text
self.text_field_embedder = text_field_embedder
self.encoder = encoder
self.dropout = torch.nn.Dropout(dropout) if dropout else None
# crf
output_dim = self.encoder.get_output_dim()
self.tag_projection_layer = TimeDistributed(Linear(output_dim, self.num_tags))
self.crf = ConditionalRandomField(self.num_tags, constraints=None, include_start_end_transitions=include_start_end_transitions)
self.metrics = {
"accuracy": CategoricalAccuracy(),
"accuracy3": CategoricalAccuracy(top_k=3)
}
for index, label in self.vocab.get_index_to_token_vocabulary(self.label_namespace).items():
self.metrics['F1_' + label] = F1Measure(positive_label=index)
initializer(self)
示例4: __init__
# 需要導入模塊: from allennlp import modules [as 別名]
# 或者: from allennlp.modules import Seq2SeqEncoder [as 別名]
def __init__(
self,
vocab: Vocabulary,
sentence_embedder: TextFieldEmbedder,
action_embedding_dim: int,
encoder: Seq2SeqEncoder,
attention: Attention,
decoder_beam_search: BeamSearch,
max_decoding_steps: int,
dropout: float = 0.0,
) -> None:
super(NlvrDirectSemanticParser, self).__init__(
vocab=vocab,
sentence_embedder=sentence_embedder,
action_embedding_dim=action_embedding_dim,
encoder=encoder,
dropout=dropout,
)
self._decoder_trainer = MaximumMarginalLikelihood()
self._decoder_step = BasicTransitionFunction(
encoder_output_dim=self._encoder.get_output_dim(),
action_embedding_dim=action_embedding_dim,
input_attention=attention,
activation=Activation.by_name("tanh")(),
add_action_bias=False,
dropout=dropout,
)
self._decoder_beam_search = decoder_beam_search
self._max_decoding_steps = max_decoding_steps
self._action_padding_index = -1
示例5: __init__
# 需要導入模塊: from allennlp import modules [as 別名]
# 或者: from allennlp.modules import Seq2SeqEncoder [as 別名]
def __init__(
self,
vocab: Vocabulary,
sentence_embedder: TextFieldEmbedder,
action_embedding_dim: int,
encoder: Seq2SeqEncoder,
dropout: float = 0.0,
rule_namespace: str = "rule_labels",
) -> None:
super(NlvrSemanticParser, self).__init__(vocab=vocab)
self._sentence_embedder = sentence_embedder
self._denotation_accuracy = Average()
self._consistency = Average()
self._encoder = encoder
if dropout > 0:
self._dropout = torch.nn.Dropout(p=dropout)
else:
self._dropout = lambda x: x
self._rule_namespace = rule_namespace
self._action_embedder = Embedding(
num_embeddings=vocab.get_vocab_size(self._rule_namespace),
embedding_dim=action_embedding_dim,
)
# This is what we pass as input in the first step of decoding, when we don't have a
# previous action.
self._first_action_embedding = torch.nn.Parameter(torch.FloatTensor(action_embedding_dim))
torch.nn.init.normal_(self._first_action_embedding)
示例6: __init__
# 需要導入模塊: from allennlp import modules [as 別名]
# 或者: from allennlp.modules import Seq2SeqEncoder [as 別名]
def __init__(self, vocab: Vocabulary,
text_field_embedder: TextFieldEmbedder,
encoder: Seq2SeqEncoder,
projection_feedforward: FeedForward,
inference_encoder: Seq2SeqEncoder,
output_feedforward: FeedForward,
output_logit: FeedForward,
final_feedforward: FeedForward,
coverage_loss: CoverageLoss,
similarity_function: SimilarityFunction = DotProductSimilarity(),
dropout: float = 0.5,
contextualize_pair_comparators: bool = False,
pair_context_encoder: Seq2SeqEncoder = None,
pair_feedforward: FeedForward = None,
initializer: InitializerApplicator = InitializerApplicator(),
regularizer: Optional[RegularizerApplicator] = None) -> None:
# Need to send it verbatim because otherwise FromParams doesn't work appropriately.
super().__init__(vocab=vocab,
text_field_embedder=text_field_embedder,
encoder=encoder,
similarity_function=similarity_function,
projection_feedforward=projection_feedforward,
inference_encoder=inference_encoder,
output_feedforward=output_feedforward,
output_logit=output_logit,
final_feedforward=final_feedforward,
contextualize_pair_comparators=contextualize_pair_comparators,
coverage_loss=coverage_loss,
pair_context_encoder=pair_context_encoder,
pair_feedforward=pair_feedforward,
dropout=dropout,
initializer=initializer,
regularizer=regularizer)
self._answer_loss = torch.nn.CrossEntropyLoss()
self._accuracy = CategoricalAccuracy()
示例7: __init__
# 需要導入模塊: from allennlp import modules [as 別名]
# 或者: from allennlp.modules import Seq2SeqEncoder [as 別名]
def __init__(self, vocab: Vocabulary,
text_field_embedder: TextFieldEmbedder,
encoder: Seq2SeqEncoder,
projection_feedforward: FeedForward,
inference_encoder: Seq2SeqEncoder,
output_feedforward: FeedForward,
output_logit: FeedForward,
final_feedforward: FeedForward,
coverage_loss: CoverageLoss,
similarity_function: SimilarityFunction = DotProductSimilarity(),
dropout: float = 0.5,
contextualize_pair_comparators: bool = False,
pair_context_encoder: Seq2SeqEncoder = None,
pair_feedforward: FeedForward = None,
initializer: InitializerApplicator = InitializerApplicator(),
regularizer: Optional[RegularizerApplicator] = None) -> None:
super().__init__(vocab=vocab,
text_field_embedder=text_field_embedder,
encoder=encoder,
similarity_function=similarity_function,
projection_feedforward=projection_feedforward,
inference_encoder=inference_encoder,
output_feedforward=output_feedforward,
output_logit=output_logit,
final_feedforward=final_feedforward,
coverage_loss=coverage_loss,
contextualize_pair_comparators=contextualize_pair_comparators,
pair_context_encoder=pair_context_encoder,
pair_feedforward=pair_feedforward,
dropout=dropout,
initializer=initializer,
regularizer=regularizer)
self._ignore_index = -1
self._answer_loss = torch.nn.CrossEntropyLoss(ignore_index=self._ignore_index)
self._coverage_loss = coverage_loss
self._accuracy = CategoricalAccuracy()
self._entailment_f1 = F1Measure(self._label2idx["entailment"])
示例8: __init__
# 需要導入模塊: from allennlp import modules [as 別名]
# 或者: from allennlp.modules import Seq2SeqEncoder [as 別名]
def __init__(self, vocab: Vocabulary,
text_field_embedder: TextFieldEmbedder,
phrase_layer: Seq2SeqEncoder,
projected_layer: Seq2SeqEncoder,
flow_layer: Seq2SeqEncoder,
contextual_passage: Seq2SeqEncoder,
contextual_question: Seq2SeqEncoder,
dropout: float = 0.2,
regularizer: Optional[RegularizerApplicator] = None,
initializer: InitializerApplicator = InitializerApplicator(),
):
super(MultiGranularityHierarchicalAttentionFusionNetworks, self).__init__(vocab, regularizer)
self._text_field_embedder = text_field_embedder
self._phrase_layer = phrase_layer
self._encoding_dim = self._phrase_layer.get_output_dim()
self.projected_layer = torch.nn.Linear(self._encoding_dim + 1024, self._encoding_dim)
self.fuse = FusionLayer(self._encoding_dim)
self.projected_lstm = projected_layer
self.flow = flow_layer
self.contextual_layer_p = contextual_passage
self.contextual_layer_q = contextual_question
self.linear_self_align = torch.nn.Linear(self._encoding_dim, 1)
self.bilinear_layer_s = BilinearSeqAtt(self._encoding_dim, self._encoding_dim)
self.bilinear_layer_e = BilinearSeqAtt(self._encoding_dim, self._encoding_dim)
self.yesno_predictor = torch.nn.Linear(self._encoding_dim, 3)
self.relu = torch.nn.ReLU()
self._max_span_length = 30
self._span_start_accuracy = CategoricalAccuracy()
self._span_end_accuracy = CategoricalAccuracy()
self._span_accuracy = BooleanAccuracy()
self._squad_metrics = SquadEmAndF1()
self._span_yesno_accuracy = CategoricalAccuracy()
self._official_f1 = Average()
self._variational_dropout = InputVariationalDropout(dropout)
self._loss = torch.nn.CrossEntropyLoss()
initializer(self)
示例9: __init__
# 需要導入模塊: from allennlp import modules [as 別名]
# 或者: from allennlp.modules import Seq2SeqEncoder [as 別名]
def __init__(self,
vocab: Vocabulary,
source_embedder: TextFieldEmbedder,
encoder: Seq2SeqEncoder,
attention: Attention,
beam_size: int,
max_decoding_steps: int,
target_embedding_dim: int = None,
copy_token: str = "@COPY@",
source_namespace: str = "tokens",
target_namespace: str = "target_tokens",
tensor_based_metric: Metric = None,
token_based_metric: Metric = None,
tie_embeddings: bool = False) -> None:
target_embedding_dim = target_embedding_dim or source_embedder.get_output_dim()
CopyNetSeq2Seq.__init__(
self,
vocab,
source_embedder,
encoder,
attention,
beam_size,
max_decoding_steps,
target_embedding_dim,
copy_token,
source_namespace,
target_namespace,
tensor_based_metric,
token_based_metric
)
self._tie_embeddings = tie_embeddings
if self._tie_embeddings:
assert source_namespace == target_namespace
assert "token_embedder_tokens" in dict(self._source_embedder.named_children())
source_token_embedder = dict(self._source_embedder.named_children())["token_embedder_tokens"]
self._target_embedder.weight = source_token_embedder.weight
if tensor_based_metric is None:
self._tensor_based_metric = None
示例10: __init__
# 需要導入模塊: from allennlp import modules [as 別名]
# 或者: from allennlp.modules import Seq2SeqEncoder [as 別名]
def __init__(self,
vocab: Vocabulary,
source_text_embedder: TextFieldEmbedder,
encoder: Seq2SeqEncoder,
decoder: SeqDecoder,
tied_source_embedder_key: Optional[str] = None,
initializer: InitializerApplicator = InitializerApplicator(),
regularizer: Optional[RegularizerApplicator] = None) -> None:
super(CustomComposedSeq2Seq, self).__init__(vocab, regularizer)
self._source_text_embedder = source_text_embedder
self._encoder = encoder
self._decoder = decoder
if self._encoder.get_output_dim() != self._decoder.get_output_dim():
raise ConfigurationError(f"Encoder output dimension {self._encoder.get_output_dim()} should be"
f" equal to decoder dimension {self._decoder.get_output_dim()}.")
if tied_source_embedder_key:
if not isinstance(self._source_text_embedder, BasicTextFieldEmbedder):
raise ConfigurationError("Unable to tie embeddings,"
"Source text embedder is not an instance of `BasicTextFieldEmbedder`.")
source_embedder = self._source_text_embedder._token_embedders[tied_source_embedder_key]
if not isinstance(source_embedder, Embedding):
raise ConfigurationError("Unable to tie embeddings,"
"Selected source embedder is not an instance of `Embedding`.")
if source_embedder.get_output_dim() != self._decoder.target_embedder.get_output_dim():
raise ConfigurationError(f"Output Dimensions mismatch between"
f"source embedder and target embedder.")
self._source_text_embedder._token_embedders[tied_source_embedder_key] = self._decoder.target_embedder
initializer(self)
示例11: __init__
# 需要導入模塊: from allennlp import modules [as 別名]
# 或者: from allennlp.modules import Seq2SeqEncoder [as 別名]
def __init__(self,
vocab: Vocabulary,
text_field_embedder: TextFieldEmbedder,
question_encoder: Seq2SeqEncoder,
passage_encoder: Seq2SeqEncoder,
pair_encoder: AttentionEncoder,
self_encoder: AttentionEncoder,
output_layer: QAOutputLayer,
initializer: InitializerApplicator = InitializerApplicator(),
regularizer: Optional[RegularizerApplicator] = None,
share_encoder: bool = False):
super().__init__(vocab, regularizer)
self.text_field_embedder = text_field_embedder
self.question_encoder = question_encoder
self.passage_encoder = passage_encoder
self.pair_encoder = pair_encoder
self.self_encoder = self_encoder
self.output_layer = output_layer
self._span_start_accuracy = CategoricalAccuracy()
self._span_end_accuracy = CategoricalAccuracy()
self._span_accuracy = BooleanAccuracy()
self._squad_metrics = SquadEmAndF1()
self.share_encoder = share_encoder
self.loss = torch.nn.CrossEntropyLoss()
initializer(self)
示例12: __init__
# 需要導入模塊: from allennlp import modules [as 別名]
# 或者: from allennlp.modules import Seq2SeqEncoder [as 別名]
def __init__(self, architecture: Seq2SeqEncoder, aggregations: str) -> None:
super(Seq2Seq, self).__init__(architecture)
self._architecture = architecture
self._aggregations = aggregations
if "attention" in self._aggregations:
self._attention_layer = torch.nn.Linear(self._architecture.get_output_dim(),
1)
示例13: __init__
# 需要導入模塊: from allennlp import modules [as 別名]
# 或者: from allennlp.modules import Seq2SeqEncoder [as 別名]
def __init__(self, vocab: Vocabulary,
text_field_embedder: TextFieldEmbedder,
encoder: Seq2SeqEncoder,
calculate_span_f1: bool = None,
label_encoding: Optional[str] = None,
label_namespace: str = "labels",
verbose_metrics: bool = False,
initializer: InitializerApplicator = InitializerApplicator(),
regularizer: Optional[RegularizerApplicator] = None) -> None:
super(SimpleTagger, self).__init__(vocab, regularizer)
self.label_namespace = label_namespace
self.text_field_embedder = text_field_embedder
self.num_classes = self.vocab.get_vocab_size(label_namespace)
self.encoder = encoder
self._verbose_metrics = verbose_metrics
self.tag_projection_layer = TimeDistributed(Linear(self.encoder.get_output_dim(),
self.num_classes))
check_dimensions_match(text_field_embedder.get_output_dim(), encoder.get_input_dim(),
"text field embedding dim", "encoder input dim")
# We keep calculate_span_f1 as a constructor argument for API consistency with
# the CrfTagger, even it is redundant in this class
# (label_encoding serves the same purpose).
if calculate_span_f1 and not label_encoding:
raise ConfigurationError("calculate_span_f1 is True, but "
"no label_encoding was specified.")
self.metrics = {
"accuracy": CategoricalAccuracy(),
"accuracy3": CategoricalAccuracy(top_k=3)
}
if calculate_span_f1 or label_encoding:
self._f1_metric = SpanBasedF1Measure(vocab,
tag_namespace=label_namespace,
label_encoding=label_encoding)
else:
self._f1_metric = None
initializer(self)
示例14: __init__
# 需要導入模塊: from allennlp import modules [as 別名]
# 或者: from allennlp.modules import Seq2SeqEncoder [as 別名]
def __init__(self,
vocab: Vocabulary,
span_encoder: Seq2SeqEncoder,
reasoning_encoder: Seq2SeqEncoder,
input_dropout: float = 0.3,
hidden_dim_maxpool: int = 1024,
class_embs: bool = True,
reasoning_use_obj: bool = True,
reasoning_use_answer: bool = True,
reasoning_use_question: bool = True,
pool_reasoning: bool = True,
pool_answer: bool = True,
pool_question: bool = False,
initializer: InitializerApplicator = InitializerApplicator(),
):
super(HGL_Model, self).__init__(vocab)
self.detector = SimpleDetector(pretrained=True, average_pool=True, semantic=class_embs, final_dim=512)
###################################################################################################
self.rnn_input_dropout = TimeDistributed(InputVariationalDropout(input_dropout)) if input_dropout > 0 else None
self.span_encoder = TimeDistributed(span_encoder)
self.reasoning_encoder = TimeDistributed(reasoning_encoder)
self.Graph_reasoning = Graph_reasoning(512)
self.QAHG = BilinearMatrixAttention(
matrix_1_dim=span_encoder.get_output_dim(),
matrix_2_dim=span_encoder.get_output_dim(),
)
self.VAHG = BilinearMatrixAttention(
matrix_1_dim=span_encoder.get_output_dim(),
matrix_2_dim=self.detector.final_dim,
)
self.reasoning_use_obj = reasoning_use_obj
self.reasoning_use_answer = reasoning_use_answer
self.reasoning_use_question = reasoning_use_question
self.pool_reasoning = pool_reasoning
self.pool_answer = pool_answer
self.pool_question = pool_question
dim = sum([d for d, to_pool in [(reasoning_encoder.get_output_dim(), self.pool_reasoning),
(span_encoder.get_output_dim(), self.pool_answer),
(span_encoder.get_output_dim(), self.pool_question)] if to_pool])
self.final_mlp = torch.nn.Sequential(
torch.nn.Dropout(input_dropout, inplace=False),
torch.nn.Linear(dim, hidden_dim_maxpool),
torch.nn.ReLU(inplace=True),
torch.nn.Dropout(input_dropout, inplace=False),
torch.nn.Linear(hidden_dim_maxpool, 1),
)
self._accuracy = CategoricalAccuracy()
self._loss = torch.nn.CrossEntropyLoss()
initializer(self)
示例15: embedd_encode_and_aggregate_list_text_field
# 需要導入模塊: from allennlp import modules [as 別名]
# 或者: from allennlp.modules import Seq2SeqEncoder [as 別名]
def embedd_encode_and_aggregate_list_text_field(texts_list: Dict[str, torch.LongTensor],
text_field_embedder,
embeddings_dropout,
encoder: Seq2SeqEncoder,
aggregation_type,
init_hidden_states=None):
embedded_texts = text_field_embedder(texts_list)
embedded_texts = embeddings_dropout(embedded_texts)
bs, ch_cnt, ch_tkn_cnt, d = tuple(embedded_texts.shape)
embedded_texts_flattened = embedded_texts.view([bs * ch_cnt, ch_tkn_cnt, -1])
# masks
texts_mask_dim_3 = get_text_field_mask(texts_list, num_wrapping_dims=1).float()
texts_mask_flatened = texts_mask_dim_3.view([-1, ch_tkn_cnt])
# context encoding
multiple_texts_init_states = None
if init_hidden_states is not None:
if init_hidden_states.shape[0] == bs and init_hidden_states.shape[1] != ch_cnt:
if init_hidden_states.shape[1] != encoder.get_output_dim():
raise ValueError("The shape of init_hidden_states is {0} but is expected to be {1} or {2}".format(str(init_hidden_states.shape),
str([bs, encoder.get_output_dim()]),
str([bs, ch_cnt, encoder.get_output_dim()])))
# in this case we passed only 2D tensor which is the default output from question encoder
multiple_texts_init_states = init_hidden_states.unsqueeze(1).expand([bs, ch_cnt, encoder.get_output_dim()]).contiguous()
# reshape this to match the flattedned tokens
multiple_texts_init_states = multiple_texts_init_states.view([bs * ch_cnt, encoder.get_output_dim()])
else:
multiple_texts_init_states = init_hidden_states.view([bs * ch_cnt, encoder.get_output_dim()])
encoded_texts_flattened = encoder(embedded_texts_flattened, texts_mask_flatened, hidden_state=multiple_texts_init_states)
aggregated_choice_flattened = seq2vec_seq_aggregate(encoded_texts_flattened, texts_mask_flatened,
aggregation_type,
encoder.is_bidirectional(),
1) # bs*ch X d
aggregated_choice_flattened_reshaped = aggregated_choice_flattened.view([bs, ch_cnt, -1])
return aggregated_choice_flattened_reshaped