當前位置: 首頁>>代碼示例>>Python>>正文


Python Seq2SeqEncoder.from_params方法代碼示例

本文整理匯總了Python中allennlp.modules.Seq2SeqEncoder.from_params方法的典型用法代碼示例。如果您正苦於以下問題:Python Seq2SeqEncoder.from_params方法的具體用法?Python Seq2SeqEncoder.from_params怎麽用?Python Seq2SeqEncoder.from_params使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在allennlp.modules.Seq2SeqEncoder的用法示例。


在下文中一共展示了Seq2SeqEncoder.from_params方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: from_params

# 需要導入模塊: from allennlp.modules import Seq2SeqEncoder [as 別名]
# 或者: from allennlp.modules.Seq2SeqEncoder import from_params [as 別名]
def from_params(cls, vocab: Vocabulary, params: Params) -> 'CrfTagger':
        embedder_params = params.pop("text_field_embedder")
        text_field_embedder = TextFieldEmbedder.from_params(vocab, embedder_params)
        encoder = Seq2SeqEncoder.from_params(params.pop("encoder"))
        label_namespace = params.pop("label_namespace", "labels")
        constraint_type = params.pop("constraint_type", None)
        dropout = params.pop("dropout", None)
        include_start_end_transitions = params.pop("include_start_end_transitions", True)
        initializer = InitializerApplicator.from_params(params.pop('initializer', []))
        regularizer = RegularizerApplicator.from_params(params.pop('regularizer', []))

        params.assert_empty(cls.__name__)

        return cls(vocab=vocab,
                   text_field_embedder=text_field_embedder,
                   encoder=encoder,
                   label_namespace=label_namespace,
                   constraint_type=constraint_type,
                   dropout=dropout,
                   include_start_end_transitions=include_start_end_transitions,
                   initializer=initializer,
                   regularizer=regularizer) 
開發者ID:arthurmensch,項目名稱:didyprog,代碼行數:24,代碼來源:crf_tagger.py

示例2: test_from_params_builders_encoder_correctly

# 需要導入模塊: from allennlp.modules import Seq2SeqEncoder [as 別名]
# 或者: from allennlp.modules.Seq2SeqEncoder import from_params [as 別名]
def test_from_params_builders_encoder_correctly(self):
        # We're just making sure parameters get passed through correctly here, and that the basic
        # API works.
        params = Params(
            {
                "type": "lstm",
                "bidirectional": True,
                "num_layers": 3,
                "input_size": 5,
                "hidden_size": 7,
                "stateful": True,
            }
        )
        encoder = Seq2SeqEncoder.from_params(params)

        assert encoder.__class__.__name__ == "LstmSeq2SeqEncoder"
        assert encoder._module.__class__.__name__ == "LSTM"
        assert encoder._module.num_layers == 3
        assert encoder._module.input_size == 5
        assert encoder._module.hidden_size == 7
        assert encoder._module.bidirectional is True
        assert encoder._module.batch_first is True
        assert encoder.stateful is True 
開發者ID:allenai,項目名稱:allennlp,代碼行數:25,代碼來源:seq2seq_encoder_test.py

示例3: test_from_params_builders_encoder_correctly

# 需要導入模塊: from allennlp.modules import Seq2SeqEncoder [as 別名]
# 或者: from allennlp.modules.Seq2SeqEncoder import from_params [as 別名]
def test_from_params_builders_encoder_correctly(self):
        # We're just making sure parameters get passed through correctly here, and that the basic
        # API works.
        params = Params({
                u"type": u"lstm",
                u"bidirectional": True,
                u"num_layers": 3,
                u"input_size": 5,
                u"hidden_size": 7
                })
        encoder = Seq2SeqEncoder.from_params(params)
        # pylint: disable=protected-access
        assert encoder.__class__.__name__ == u'PytorchSeq2SeqWrapper'
        assert encoder._module.__class__.__name__ == u'LSTM'
        assert encoder._module.num_layers == 3
        assert encoder._module.input_size == 5
        assert encoder._module.hidden_size == 7
        assert encoder._module.bidirectional is True
        assert encoder._module.batch_first is True 
開發者ID:plasticityai,項目名稱:magnitude,代碼行數:21,代碼來源:seq2seq_encoder_test.py

示例4: test_from_params_requires_batch_first

# 需要導入模塊: from allennlp.modules import Seq2SeqEncoder [as 別名]
# 或者: from allennlp.modules.Seq2SeqEncoder import from_params [as 別名]
def test_from_params_requires_batch_first(self):
        params = Params({"type": "lstm", "batch_first": False})
        with pytest.raises(ConfigurationError):
            Seq2SeqEncoder.from_params(params) 
開發者ID:allenai,項目名稱:allennlp,代碼行數:6,代碼來源:seq2seq_encoder_test.py

示例5: get_metrics

# 需要導入模塊: from allennlp.modules import Seq2SeqEncoder [as 別名]
# 或者: from allennlp.modules.Seq2SeqEncoder import from_params [as 別名]
def get_metrics(self, reset       = False)                    :
        return dict((metric_name, metric.get_metric(reset)) for metric_name, metric in list(self.metrics.items()))

    # The FeedForward vs Maxout logic here requires a custom from_params. 
開發者ID:plasticityai,項目名稱:magnitude,代碼行數:6,代碼來源:biattentive_classification_network.py

示例6: from_params

# 需要導入模塊: from allennlp.modules import Seq2SeqEncoder [as 別名]
# 或者: from allennlp.modules.Seq2SeqEncoder import from_params [as 別名]
def from_params(cls, vocab            , params        )                                      :  # type: ignore
        # pylint: disable=arguments-differ
        embedder_params = params.pop(u"text_field_embedder")
        text_field_embedder = TextFieldEmbedder.from_params(vocab=vocab, params=embedder_params)
        embedding_dropout = params.pop(u"embedding_dropout")
        pre_encode_feedforward = FeedForward.from_params(params.pop(u"pre_encode_feedforward"))
        encoder = Seq2SeqEncoder.from_params(params.pop(u"encoder"))
        integrator = Seq2SeqEncoder.from_params(params.pop(u"integrator"))
        integrator_dropout = params.pop(u"integrator_dropout")

        output_layer_params = params.pop(u"output_layer")
        if u"activations" in output_layer_params:
            output_layer = FeedForward.from_params(output_layer_params)
        else:
            output_layer = Maxout.from_params(output_layer_params)

        elmo = params.pop(u"elmo", None)
        if elmo is not None:
            elmo = Elmo.from_params(elmo)
        use_input_elmo = params.pop_bool(u"use_input_elmo", False)
        use_integrator_output_elmo = params.pop_bool(u"use_integrator_output_elmo", False)

        initializer = InitializerApplicator.from_params(params.pop(u'initializer', []))
        regularizer = RegularizerApplicator.from_params(params.pop(u'regularizer', []))
        params.assert_empty(cls.__name__)

        return cls(vocab=vocab,
                   text_field_embedder=text_field_embedder,
                   embedding_dropout=embedding_dropout,
                   pre_encode_feedforward=pre_encode_feedforward,
                   encoder=encoder,
                   integrator=integrator,
                   integrator_dropout=integrator_dropout,
                   output_layer=output_layer,
                   elmo=elmo,
                   use_input_elmo=use_input_elmo,
                   use_integrator_output_elmo=use_integrator_output_elmo,
                   initializer=initializer,
                   regularizer=regularizer) 
開發者ID:plasticityai,項目名稱:magnitude,代碼行數:41,代碼來源:biattentive_classification_network.py

示例7: test_from_params_requires_batch_first

# 需要導入模塊: from allennlp.modules import Seq2SeqEncoder [as 別名]
# 或者: from allennlp.modules.Seq2SeqEncoder import from_params [as 別名]
def test_from_params_requires_batch_first(self):
        params = Params({
                u"type": u"lstm",
                u"batch_first": False,
                })
        with pytest.raises(ConfigurationError):
            # pylint: disable=unused-variable
            encoder = Seq2SeqEncoder.from_params(params) 
開發者ID:plasticityai,項目名稱:magnitude,代碼行數:10,代碼來源:seq2seq_encoder_test.py

示例8: from_params

# 需要導入模塊: from allennlp.modules import Seq2SeqEncoder [as 別名]
# 或者: from allennlp.modules.Seq2SeqEncoder import from_params [as 別名]
def from_params(cls, vocab: Vocabulary, params: Params) -> 'ProLocalModel':
        embedder_params = params.pop("text_field_embedder")
        text_field_embedder = TextFieldEmbedder.from_params(vocab, embedder_params)

        seq2seq_encoder_params = params.pop("seq2seq_encoder")
        seq2seq_encoder = Seq2SeqEncoder.from_params(seq2seq_encoder_params)

        initializer = InitializerApplicator.from_params(params.pop("initializer", []))

        params.assert_empty(cls.__name__)

        return cls(vocab=vocab,
                   text_field_embedder=text_field_embedder,
                   seq2seq_encoder=seq2seq_encoder,
                   initializer=initializer) 
開發者ID:allenai,項目名稱:propara,代碼行數:17,代碼來源:prolocal_model.py

示例9: from_params

# 需要導入模塊: from allennlp.modules import Seq2SeqEncoder [as 別名]
# 或者: from allennlp.modules.Seq2SeqEncoder import from_params [as 別名]
def from_params(cls, vocab: Vocabulary, params: Params) -> 'ProGlobalAblation':
        token_embedder_params = params.pop("text_field_embedder")
        pos_embedder_params = params.pop("pos_field_embedder")
        sent_pos_embedder_params = params.pop("sent_pos_field_embedder")
        text_field_embedder = TextFieldEmbedder.from_params(vocab, token_embedder_params)
        pos_field_embedder = TextFieldEmbedder.from_params(vocab, pos_embedder_params)
        sent_pos_field_embedder = TextFieldEmbedder.from_params(vocab, sent_pos_embedder_params)

        modeling_layer = Seq2SeqEncoder.from_params(params.pop("modeling_layer"))
        span_end_encoder_before = Seq2SeqEncoder.from_params(params.pop("span_end_encoder_bef"))
        span_end_encoder_after = Seq2SeqEncoder.from_params(params.pop("span_end_encoder_aft"))
        dropout = params.pop('dropout', 0.2)

        init_params = params.pop('initializer', None)
        initializer = (InitializerApplicator.from_params(init_params)
                       if init_params is not None
                       else InitializerApplicator())

        params.assert_empty(cls.__name__)
        return cls(vocab=vocab,
                   text_field_embedder=text_field_embedder,
                   pos_field_embedder=pos_field_embedder,
                   sent_pos_field_embedder=sent_pos_field_embedder,
                   modeling_layer=modeling_layer,
                   span_end_encoder_before=span_end_encoder_before,
                   span_end_encoder_after=span_end_encoder_after,
                   dropout=dropout,
                   initializer=initializer) 
開發者ID:allenai,項目名稱:propara,代碼行數:30,代碼來源:proglobal_model_ablation.py

示例10: from_params

# 需要導入模塊: from allennlp.modules import Seq2SeqEncoder [as 別名]
# 或者: from allennlp.modules.Seq2SeqEncoder import from_params [as 別名]
def from_params(cls, vocab: Vocabulary, params: Params) -> 'ProGlobal':
        token_embedder_params = params.pop("text_field_embedder")
        pos_embedder_params = params.pop("pos_field_embedder")
        sent_pos_embedder_params = params.pop("sent_pos_field_embedder")
        text_field_embedder = TextFieldEmbedder.from_params(vocab, token_embedder_params)
        pos_field_embedder = TextFieldEmbedder.from_params(vocab, pos_embedder_params)
        sent_pos_field_embedder = TextFieldEmbedder.from_params(vocab, sent_pos_embedder_params)

        modeling_layer = Seq2SeqEncoder.from_params(params.pop("modeling_layer"))
        span_end_encoder_before = Seq2SeqEncoder.from_params(params.pop("span_end_encoder_bef"))
        span_start_encoder_after = Seq2SeqEncoder.from_params(params.pop("span_start_encoder_aft"))
        span_end_encoder_after = Seq2SeqEncoder.from_params(params.pop("span_end_encoder_aft"))
        dropout = params.pop('dropout', 0.2)

        init_params = params.pop('initializer', None)
        initializer = (InitializerApplicator.from_params(init_params)
                       if init_params is not None
                       else InitializerApplicator())

        params.assert_empty(cls.__name__)
        return cls(vocab=vocab,
                   text_field_embedder=text_field_embedder,
                   pos_field_embedder=pos_field_embedder,
                   sent_pos_field_embedder=sent_pos_field_embedder,
                   modeling_layer=modeling_layer,
                   span_start_encoder_after=span_start_encoder_after,
                   span_end_encoder_before=span_end_encoder_before,
                   span_end_encoder_after=span_end_encoder_after,
                   dropout=dropout,
                   initializer=initializer) 
開發者ID:allenai,項目名稱:propara,代碼行數:32,代碼來源:proglobal_model.py

示例11: from_params

# 需要導入模塊: from allennlp.modules import Seq2SeqEncoder [as 別名]
# 或者: from allennlp.modules.Seq2SeqEncoder import from_params [as 別名]
def from_params(cls, vocab: Vocabulary, params: Params) -> 'ScaffoldBilstmAttentionClassifier':
        with_elmo = params.pop_bool("with_elmo", False)
        if with_elmo:
            embedder_params = params.pop("elmo_text_field_embedder")
        else:
            embedder_params = params.pop("text_field_embedder")
        text_field_embedder = TextFieldEmbedder.from_params(embedder_params, vocab=vocab)
        # citation_text_encoder = Seq2VecEncoder.from_params(params.pop("citation_text_encoder"))
        citation_text_encoder = Seq2SeqEncoder.from_params(params.pop("citation_text_encoder"))
        classifier_feedforward = FeedForward.from_params(params.pop("classifier_feedforward"))
        classifier_feedforward_2 = FeedForward.from_params(params.pop("classifier_feedforward_2"))
        classifier_feedforward_3 = FeedForward.from_params(params.pop("classifier_feedforward_3"))

        initializer = InitializerApplicator.from_params(params.pop('initializer', []))
        regularizer = RegularizerApplicator.from_params(params.pop('regularizer', []))

        use_lexicon = params.pop_bool("use_lexicon_features", False)
        use_sparse_lexicon_features = params.pop_bool("use_sparse_lexicon_features", False)
        data_format = params.pop('data_format')

        report_auxiliary_metrics = params.pop_bool("report_auxiliary_metrics", False)

        predict_mode = params.pop_bool("predict_mode", False)
        print(f"pred mode: {predict_mode}")

        return cls(vocab=vocab,
                   text_field_embedder=text_field_embedder,
                   citation_text_encoder=citation_text_encoder,
                   classifier_feedforward=classifier_feedforward,
                   classifier_feedforward_2=classifier_feedforward_2,
                   classifier_feedforward_3=classifier_feedforward_3,
                   initializer=initializer,
                   regularizer=regularizer,
                   report_auxiliary_metrics=report_auxiliary_metrics,
                   predict_mode=predict_mode) 
開發者ID:allenai,項目名稱:scicite,代碼行數:37,代碼來源:scaffold_bilstm_attention_classifier.py

示例12: from_params

# 需要導入模塊: from allennlp.modules import Seq2SeqEncoder [as 別名]
# 或者: from allennlp.modules.Seq2SeqEncoder import from_params [as 別名]
def from_params(cls, vocab: Vocabulary, params: Params) -> 'ESIM':
        embedder_params = params.pop("text_field_embedder")
        text_field_embedder = TextFieldEmbedder.from_params(vocab, embedder_params)

        encoder = Seq2SeqEncoder.from_params(params.pop("encoder"))
        similarity_function = SimilarityFunction.from_params(params.pop("similarity_function"))
        projection_feedforward = FeedForward.from_params(params.pop('projection_feedforward'))
        inference_encoder = Seq2SeqEncoder.from_params(params.pop("inference_encoder"))
        output_feedforward = FeedForward.from_params(params.pop('output_feedforward'))
        output_logit = FeedForward.from_params(params.pop('output_logit'))
        initializer = InitializerApplicator.from_params(params.pop('initializer', []))
        regularizer = RegularizerApplicator.from_params(params.pop('regularizer', []))

        dropout = params.pop("dropout", 0)

        params.assert_empty(cls.__name__)
        return cls(vocab=vocab,
                   text_field_embedder=text_field_embedder,
                   encoder=encoder,
                   similarity_function=similarity_function,
                   projection_feedforward=projection_feedforward,
                   inference_encoder=inference_encoder,
                   output_feedforward=output_feedforward,
                   output_logit=output_logit,
                   initializer=initializer,
                   dropout=dropout,
                   regularizer=regularizer) 
開發者ID:rowanz,項目名稱:swagaf,代碼行數:29,代碼來源:esim_swag.py

示例13: from_params

# 需要導入模塊: from allennlp.modules import Seq2SeqEncoder [as 別名]
# 或者: from allennlp.modules.Seq2SeqEncoder import from_params [as 別名]
def from_params(cls, vocab: Vocabulary, params: Params) -> 'DecomposableAttention':
        embedder_params = params.pop("text_field_embedder")
        text_field_embedder = TextFieldEmbedder.from_params(vocab, embedder_params)

        premise_encoder_params = params.pop("premise_encoder", None)
        if premise_encoder_params is not None:
            premise_encoder = Seq2SeqEncoder.from_params(premise_encoder_params)
        else:
            premise_encoder = None

        hypothesis_encoder_params = params.pop("hypothesis_encoder", None)
        if hypothesis_encoder_params is not None:
            hypothesis_encoder = Seq2SeqEncoder.from_params(hypothesis_encoder_params)
        else:
            hypothesis_encoder = None

        attend_feedforward = FeedForward.from_params(params.pop('attend_feedforward'))
        similarity_function = SimilarityFunction.from_params(params.pop("similarity_function"))
        compare_feedforward = FeedForward.from_params(params.pop('compare_feedforward'))
        aggregate_feedforward = FeedForward.from_params(params.pop('aggregate_feedforward'))
        initializer = InitializerApplicator.from_params(params.pop('initializer', []))
        regularizer = RegularizerApplicator.from_params(params.pop('regularizer', []))

        preload_path = params.pop('preload_path', None)
        params.assert_empty(cls.__name__)
        return cls(vocab=vocab,
                   text_field_embedder=text_field_embedder,
                   attend_feedforward=attend_feedforward,
                   similarity_function=similarity_function,
                   compare_feedforward=compare_feedforward,
                   aggregate_feedforward=aggregate_feedforward,
                   premise_encoder=premise_encoder,
                   hypothesis_encoder=hypothesis_encoder,
                   initializer=initializer,
                   regularizer=regularizer,
                   preload_path=preload_path) 
開發者ID:rowanz,項目名稱:swagaf,代碼行數:38,代碼來源:decomposable_attention_swag.py

示例14: from_params

# 需要導入模塊: from allennlp.modules import Seq2SeqEncoder [as 別名]
# 或者: from allennlp.modules.Seq2SeqEncoder import from_params [as 別名]
def from_params(cls, vocab: Vocabulary, params: Params) -> 'LstmSwag':
        embedder_params = params.pop("text_field_embedder")
        text_field_embedder = TextFieldEmbedder.from_params(vocab, embedder_params)
        encoder = Seq2SeqEncoder.from_params(params.pop("encoder"))

        initializer = InitializerApplicator.from_params(params.pop('initializer', []))
        regularizer = RegularizerApplicator.from_params(params.pop('regularizer', []))
        params.assert_empty(cls.__name__)
        return cls(vocab=vocab,
                   text_field_embedder=text_field_embedder,
                   encoder=encoder,
                   initializer=initializer,
                   regularizer=regularizer) 
開發者ID:rowanz,項目名稱:swagaf,代碼行數:15,代碼來源:lstm_swag.py

示例15: from_params

# 需要導入模塊: from allennlp.modules import Seq2SeqEncoder [as 別名]
# 或者: from allennlp.modules.Seq2SeqEncoder import from_params [as 別名]
def from_params(cls, vocab: Vocabulary, params: Params) -> 'StackedNNAggregateCustom':
        embedder_params = params.pop("text_field_embedder")
        text_field_embedder = BasicTextFieldEmbedder.from_params(vocab, embedder_params)

        embeddings_dropout_value = params.pop("embeddings_dropout", 0.0)

        share_encoders = params.pop("share_encoders", False)

        # premise encoder
        premise_encoder_params = params.pop("premise_encoder", None)
        premise_enc_aggregate = params.pop("premise_encoder_aggregate", "max")
        if premise_encoder_params is not None:
            premise_encoder = Seq2SeqEncoder.from_params(premise_encoder_params)
        else:
            premise_encoder = None

        # hypothesis encoder
        if share_encoders:
            hypothesis_enc_aggregate = premise_enc_aggregate
            hypothesis_encoder = premise_encoder
        else:
            hypothesis_encoder_params = params.pop("hypothesis_encoder", None)
            hypothesis_enc_aggregate = params.pop("hypothesis_encoder_aggregate", "max")

            if hypothesis_encoder_params is not None:
                hypothesis_encoder = Seq2SeqEncoder.from_params(hypothesis_encoder_params)
            else:
                hypothesis_encoder = None

        aggregate_feedforward = FeedForward.from_params(params.pop('aggregate_feedforward'))

        init_params = params.pop('initializer', None)
        initializer = (InitializerApplicator.from_params(init_params)
                       if init_params is not None
                       else InitializerApplicator())

        return cls(vocab=vocab,
                   text_field_embedder=text_field_embedder,
                   aggregate_feedforward=aggregate_feedforward,
                   premise_encoder=premise_encoder,
                   hypothesis_encoder=hypothesis_encoder,
                   initializer=initializer,
                   aggregate_hypothesis=hypothesis_enc_aggregate,
                   aggregate_premise=premise_enc_aggregate,
                   embeddings_dropout_value=embeddings_dropout_value,
                   share_encoders=share_encoders) 
開發者ID:allenai,項目名稱:OpenBookQA,代碼行數:48,代碼來源:stacked_nn_aggregate_custom.py


注:本文中的allennlp.modules.Seq2SeqEncoder.from_params方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。