當前位置: 首頁>>代碼示例>>Python>>正文


Python modules.InputVariationalDropout方法代碼示例

本文整理匯總了Python中allennlp.modules.InputVariationalDropout方法的典型用法代碼示例。如果您正苦於以下問題:Python modules.InputVariationalDropout方法的具體用法?Python modules.InputVariationalDropout怎麽用?Python modules.InputVariationalDropout使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在allennlp.modules的用法示例。


在下文中一共展示了modules.InputVariationalDropout方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from allennlp import modules [as 別名]
# 或者: from allennlp.modules import InputVariationalDropout [as 別名]
def __init__(self,
                 encoder: Seq2SeqEncoder,
                 projection_feedforward: FeedForward,
                 inference_encoder: Seq2SeqEncoder,
                 output_feedforward: FeedForward,
                 similarity_function: SimilarityFunction = None,
                 dropout: float = 0.5) -> None:
        super().__init__()

        self._encoder = encoder
        self._matrix_attention = LegacyMatrixAttention(similarity_function)
        self._projection_feedforward = projection_feedforward
        self._inference_encoder = inference_encoder
        if dropout:
            self.dropout = torch.nn.Dropout(dropout)
            self.rnn_input_dropout = InputVariationalDropout(dropout)
        else:
            self.dropout = None
            self.rnn_input_dropout = None
        self._output_feedforward = output_feedforward 
開發者ID:StonyBrookNLP,項目名稱:multee,代碼行數:22,代碼來源:esim_comparator.py

示例2: __init__

# 需要導入模塊: from allennlp import modules [as 別名]
# 或者: from allennlp.modules import InputVariationalDropout [as 別名]
def __init__(self,
                 vocab: Vocabulary,
                 span_encoder: Seq2SeqEncoder,
                 reasoning_encoder: Seq2SeqEncoder,
                 input_dropout: float = 0.3,
                 hidden_dim_maxpool: int = 1024,
                 class_embs: bool = True,
                 reasoning_use_obj: bool = True,
                 reasoning_use_answer: bool = True,
                 reasoning_use_question: bool = True,
                 pool_reasoning: bool = True,
                 pool_answer: bool = True,
                 pool_question: bool = False,
                 initializer: InitializerApplicator = InitializerApplicator(),
                 ):
        super(HGL_Model, self).__init__(vocab)

        self.detector = SimpleDetector(pretrained=True, average_pool=True, semantic=class_embs, final_dim=512)
        ###################################################################################################
        self.rnn_input_dropout = TimeDistributed(InputVariationalDropout(input_dropout)) if input_dropout > 0 else None
        self.span_encoder = TimeDistributed(span_encoder)
        self.reasoning_encoder = TimeDistributed(reasoning_encoder)

        self.Graph_reasoning = Graph_reasoning(512)

        self.QAHG = BilinearMatrixAttention(
            matrix_1_dim=span_encoder.get_output_dim(),
            matrix_2_dim=span_encoder.get_output_dim(),
        )

        self.VAHG = BilinearMatrixAttention(
            matrix_1_dim=span_encoder.get_output_dim(),
            matrix_2_dim=self.detector.final_dim,
        )

        self.reasoning_use_obj = reasoning_use_obj
        self.reasoning_use_answer = reasoning_use_answer
        self.reasoning_use_question = reasoning_use_question
        self.pool_reasoning = pool_reasoning
        self.pool_answer = pool_answer
        self.pool_question = pool_question
        dim = sum([d for d, to_pool in [(reasoning_encoder.get_output_dim(), self.pool_reasoning),
                                        (span_encoder.get_output_dim(), self.pool_answer),
                                        (span_encoder.get_output_dim(), self.pool_question)] if to_pool])

        self.final_mlp = torch.nn.Sequential(
            torch.nn.Dropout(input_dropout, inplace=False),
            torch.nn.Linear(dim, hidden_dim_maxpool),
            torch.nn.ReLU(inplace=True),
            torch.nn.Dropout(input_dropout, inplace=False),
            torch.nn.Linear(hidden_dim_maxpool, 1),
        )
        self._accuracy = CategoricalAccuracy()
        self._loss = torch.nn.CrossEntropyLoss()
        initializer(self) 
開發者ID:yuweijiang,項目名稱:HGL-pytorch,代碼行數:57,代碼來源:model.py

示例3: __init__

# 需要導入模塊: from allennlp import modules [as 別名]
# 或者: from allennlp.modules import InputVariationalDropout [as 別名]
def __init__(self, vocab            ,
                 text_field_embedder                   ,
                 encoder                ,
                 similarity_function                    ,
                 projection_feedforward             ,
                 inference_encoder                ,
                 output_feedforward             ,
                 output_logit             ,
                 dropout        = 0.5,
                 initializer                        = InitializerApplicator(),
                 regularizer                                  = None)        :
        super(ESIM, self).__init__(vocab, regularizer)

        self._text_field_embedder = text_field_embedder
        self._encoder = encoder

        self._matrix_attention = LegacyMatrixAttention(similarity_function)
        self._projection_feedforward = projection_feedforward

        self._inference_encoder = inference_encoder

        if dropout:
            self.dropout = torch.nn.Dropout(dropout)
            self.rnn_input_dropout = InputVariationalDropout(dropout)
        else:
            self.dropout = None
            self.rnn_input_dropout = None

        self._output_feedforward = output_feedforward
        self._output_logit = output_logit

        self._num_labels = vocab.get_vocab_size(namespace=u"labels")

        check_dimensions_match(text_field_embedder.get_output_dim(), encoder.get_input_dim(),
                               u"text field embedding dim", u"encoder input dim")
        check_dimensions_match(encoder.get_output_dim() * 4, projection_feedforward.get_input_dim(),
                               u"encoder output dim", u"projection feedforward input")
        check_dimensions_match(projection_feedforward.get_output_dim(), inference_encoder.get_input_dim(),
                               u"proj feedforward output dim", u"inference lstm input dim")

        self._accuracy = CategoricalAccuracy()
        self._loss = torch.nn.CrossEntropyLoss()

        initializer(self) 
開發者ID:plasticityai,項目名稱:magnitude,代碼行數:46,代碼來源:esim.py

示例4: __init__

# 需要導入模塊: from allennlp import modules [as 別名]
# 或者: from allennlp.modules import InputVariationalDropout [as 別名]
def __init__(self,
                 vocab: Vocabulary,
                 span_encoder: Seq2SeqEncoder,
                 reasoning_encoder: Seq2SeqEncoder,
                 input_dropout: float = 0.3,
                 hidden_dim_maxpool: int = 1024,
                 class_embs: bool=True,
                 reasoning_use_obj: bool=True,
                 reasoning_use_answer: bool=True,
                 reasoning_use_question: bool=True,
                 pool_reasoning: bool = True,
                 pool_answer: bool = True,
                 pool_question: bool = False,
                 initializer: InitializerApplicator = InitializerApplicator(),
                 ):
        super(AttentionQA, self).__init__(vocab)

        self.detector = SimpleDetector(pretrained=True, average_pool=True, semantic=class_embs, final_dim=512)
        ###################################################################################################

        self.rnn_input_dropout = TimeDistributed(InputVariationalDropout(input_dropout)) if input_dropout > 0 else None

        self.span_encoder = TimeDistributed(span_encoder)
        self.reasoning_encoder = TimeDistributed(reasoning_encoder)

        self.span_attention = BilinearMatrixAttention(
            matrix_1_dim=span_encoder.get_output_dim(),
            matrix_2_dim=span_encoder.get_output_dim(),
        )

        self.obj_attention = BilinearMatrixAttention(
            matrix_1_dim=span_encoder.get_output_dim(),
            matrix_2_dim=self.detector.final_dim,
        )

        self.reasoning_use_obj = reasoning_use_obj
        self.reasoning_use_answer = reasoning_use_answer
        self.reasoning_use_question = reasoning_use_question
        self.pool_reasoning = pool_reasoning
        self.pool_answer = pool_answer
        self.pool_question = pool_question
        dim = sum([d for d, to_pool in [(reasoning_encoder.get_output_dim(), self.pool_reasoning),
                                        (span_encoder.get_output_dim(), self.pool_answer),
                                        (span_encoder.get_output_dim(), self.pool_question)] if to_pool])

        self.final_mlp = torch.nn.Sequential(
            torch.nn.Dropout(input_dropout, inplace=False),
            torch.nn.Linear(dim, hidden_dim_maxpool),
            torch.nn.ReLU(inplace=True),
            torch.nn.Dropout(input_dropout, inplace=False),
            torch.nn.Linear(hidden_dim_maxpool, 1),
        )
        self._accuracy = CategoricalAccuracy()
        self._loss = torch.nn.CrossEntropyLoss()
        initializer(self) 
開發者ID:rowanz,項目名稱:r2c,代碼行數:57,代碼來源:model.py


注:本文中的allennlp.modules.InputVariationalDropout方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。