當前位置: 首頁>>代碼示例>>Python>>正文


Python model.Model方法代碼示例

本文整理匯總了Python中allennlp.models.model.Model方法的典型用法代碼示例。如果您正苦於以下問題:Python model.Model方法的具體用法?Python model.Model怎麽用?Python model.Model使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在allennlp.models.model的用法示例。


在下文中一共展示了model.Model方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from allennlp.models import model [as 別名]
# 或者: from allennlp.models.model import Model [as 別名]
def __init__(self, model: Model, dataset_reader: DatasetReader) -> None:
        super().__init__(model, dataset_reader)
        # Due to a formatting issue, the word overlap model includes the newline character in the
        # label string. So we first create a map from the stripped label to the model label and
        # then use the model label to get the index of entailment class. It is designed in this
        # manner to also automatically handle any new models that do not have this bug.
        labels = {label.strip(): label
                  for label in self._model.vocab.get_index_to_token_vocabulary("labels").values()}

        if "entails" in labels:
            self._entailment_idx = self._model.vocab.get_token_index(labels["entails"], "labels")
        elif "entailment" in labels:
            self._entailment_idx = self._model.vocab.get_token_index(labels["entailment"], "labels")
        else:
            raise Exception("No label for entailment found in the label space: {}".format(
                ",".join(labels))) 
開發者ID:allenai,項目名稱:scitail,代碼行數:18,代碼來源:overlap_predictor.py

示例2: evaluate

# 需要導入模塊: from allennlp.models import model [as 別名]
# 或者: from allennlp.models.model import Model [as 別名]
def evaluate(model: Model,
             instances: Iterable[Instance],
             data_iterator: DataIterator,
             output_file: str = None,
             eval_type: str = None) -> Dict[str, Any]:
    model.eval()

    iterator = data_iterator(instances, num_epochs=1)
    logger.info("Iterating over dataset")
    generator_tqdm = Tqdm.tqdm(iterator, total=data_iterator.get_num_batches(instances))
    with ExitStack() as stack:
        if output_file is None:
            file_handle = None
        else:
            file_handle = stack.enter_context(open(output_file, 'w'))
        for batch in generator_tqdm:
            model_output = model(**batch)
            metrics = model.get_metrics()
            if file_handle:
                _persist_data(file_handle, batch.get("metadata"), model_output, eval_type)
            description = ', '.join(["%s: %.2f" % (name, value) for name, value in metrics.items()]) + " ||"
            generator_tqdm.set_description(description)

    return model.get_metrics(reset=True) 
開發者ID:allenai,項目名稱:OpenBookQA,代碼行數:26,代碼來源:evaluate_predictions_qa_mc_know_visualize.py

示例3: evaluate

# 需要導入模塊: from allennlp.models import model [as 別名]
# 或者: from allennlp.models.model import Model [as 別名]
def evaluate(model: Model,
             instances: Iterable[Instance],
             data_iterator: DataIterator,
             output_file: str = None) -> Dict[str, Any]:
    model.eval()

    iterator = data_iterator(instances, num_epochs=1)
    logger.info("Iterating over dataset")
    generator_tqdm = Tqdm.tqdm(iterator, total=data_iterator.get_num_batches(instances))
    with ExitStack() as stack:
        if output_file is None:
            file_handle = None
        else:
            file_handle = stack.enter_context(open(output_file, 'w'))
        for batch in generator_tqdm:
            model_output = model(**batch)
            metrics = model.get_metrics()
            if file_handle:
                id2label = model.vocab.get_index_to_token_vocabulary("labels")
                _persist_data(file_handle, batch.get("metadata"), model_output, id2label=id2label)
            description = ', '.join(["%s: %.2f" % (name, value) for name, value in metrics.items()]) + " ||"
            generator_tqdm.set_description(description)

    return model.get_metrics() 
開發者ID:allenai,項目名稱:OpenBookQA,代碼行數:26,代碼來源:evaluate_custom.py

示例4: enable_activation_logging

# 需要導入模塊: from allennlp.models import model [as 別名]
# 或者: from allennlp.models.model import Model [as 別名]
def enable_activation_logging(self, model: Model) -> None:
        if self._histogram_interval is not None:
            # To log activation histograms to the forward pass, we register
            # a hook on forward to capture the output tensors.
            # This uses a closure to determine whether to log the activations,
            # since we don't want them on every call.
            for _, module in model.named_modules():
                if not getattr(module, "should_log_activations", False):
                    # skip it
                    continue

                def hook(module_, inputs, outputs):

                    log_prefix = "activation_histogram/{0}".format(module_.__class__)
                    if self.should_log_histograms_this_batch():
                        self.log_activation_histogram(outputs, log_prefix)

                module.register_forward_hook(hook) 
開發者ID:allenai,項目名稱:allennlp,代碼行數:20,代碼來源:tensorboard_writer.py

示例5: train_model_from_file

# 需要導入模塊: from allennlp.models import model [as 別名]
# 或者: from allennlp.models.model import Model [as 別名]
def train_model_from_file(parameter_filename: str,
                          serialization_dir: str,
                          overrides: str = "",
                          file_friendly_logging: bool = False,
                          recover: bool = False,
                          force: bool = False) -> Model:
    """
    A wrapper around :func:`train_model` which loads the params from a file.

    Parameters
    ----------
    parameter_filename : ``str``
        A json parameter file specifying an AllenNLP experiment.
    serialization_dir : ``str``
        The directory in which to save results and logs. We just pass this along to
        :func:`train_model`.
    overrides : ``str``
        A JSON string that we will use to override values in the input parameter file.
    file_friendly_logging : ``bool``, optional (default=False)
        If ``True``, we make our output more friendly to saved model files.  We just pass this
        along to :func:`train_model`.
    recover : ``bool`, optional (default=False)
        If ``True``, we will try to recover a training run from an existing serialization
        directory.  This is only intended for use when something actually crashed during the middle
        of a run.  For continuing training a model on new data, see the ``fine-tune`` command.
    force : ``bool``, optional (default=False)
        If ``True``, we will overwrite the serialization directory if it already exists.
    """
    # Load the experiment config from a file and pass it to ``train_model``.
    params = Params.from_file(parameter_filename, overrides)
    return train_model(params, serialization_dir, file_friendly_logging, recover, force) 
開發者ID:ConvLab,項目名稱:ConvLab,代碼行數:33,代碼來源:train.py

示例6: evaluate

# 需要導入模塊: from allennlp.models import model [as 別名]
# 或者: from allennlp.models.model import Model [as 別名]
def evaluate(model: Model,
             instances: Iterable[Instance],
             data_iterator: DataIterator,
             cuda_device: int,
             output_file: str = None,
             eval_type: str = None) -> Dict[str, Any]:
    model.eval()

    iterator = data_iterator(instances, num_epochs=1)
    logger.info("Iterating over dataset")
    generator_tqdm = Tqdm.tqdm(iterator, total=data_iterator.get_num_batches(instances))
    with ExitStack() as stack:
        if output_file is None:
            file_handle = None
        else:
            file_handle = stack.enter_context(open(output_file, 'w'))
        for batch in generator_tqdm:
            ## made cuda compatible (if needed)
            batch = move_to_device(batch, cuda_device)
            
            model_output = model(**batch)
            metrics = model.get_metrics()
            if file_handle:
                _persist_data(file_handle, batch.get("metadata"), model_output, eval_type)
            description = ', '.join(["%s: %.2f" % (name, value) for name, value in metrics.items()]) + " ||"
            generator_tqdm.set_description(description)

    return model.get_metrics(reset=True) 
開發者ID:allenai,項目名稱:OpenBookQA,代碼行數:30,代碼來源:evaluate_predictions_qa_mc.py

示例7: enable_gradient_clipping

# 需要導入模塊: from allennlp.models import model [as 別名]
# 或者: from allennlp.models.model import Model [as 別名]
def enable_gradient_clipping(model: Model, grad_clipping: Optional[float]) -> None:
    if grad_clipping is not None:
        for parameter in model.parameters():
            if parameter.requires_grad:
                parameter.register_hook(
                    lambda grad: nn_util.clamp_tensor(
                        grad, minimum=-grad_clipping, maximum=grad_clipping
                    )
                ) 
開發者ID:allenai,項目名稱:allennlp,代碼行數:11,代碼來源:util.py

示例8: rescale_gradients

# 需要導入模塊: from allennlp.models import model [as 別名]
# 或者: from allennlp.models.model import Model [as 別名]
def rescale_gradients(model: Model, grad_norm: Optional[float] = None) -> Optional[float]:
    """
    Performs gradient rescaling. Is a no-op if gradient rescaling is not enabled.
    """
    if grad_norm:
        parameters_to_clip = [p for p in model.parameters() if p.grad is not None]
        return clip_grad_norm_(parameters_to_clip, grad_norm)
    return None 
開發者ID:allenai,項目名稱:allennlp,代碼行數:10,代碼來源:util.py

示例9: get_metrics

# 需要導入模塊: from allennlp.models import model [as 別名]
# 或者: from allennlp.models.model import Model [as 別名]
def get_metrics(
    model: Model,
    total_loss: float,
    total_reg_loss: float,
    num_batches: int,
    reset: bool = False,
    world_size: int = 1,
    cuda_device: Union[int, torch.device] = torch.device("cpu"),
) -> Dict[str, float]:
    """
    Gets the metrics but sets `"loss"` to
    the total loss divided by the `num_batches` so that
    the `"loss"` metric is "average loss per batch".
    """
    metrics = model.get_metrics(reset=reset)
    metrics["loss"] = float(total_loss / num_batches) if num_batches > 0 else 0.0
    metrics["reg_loss"] = float(total_reg_loss / num_batches) if num_batches > 0 else 0.0

    if world_size > 1:
        # In distributed mode, average out all metrics across GPUs
        aggregated_metrics = {}
        for metric_name, metric_val in metrics.items():
            metric_tensor = torch.tensor(metric_val).to(cuda_device)
            dist.all_reduce(metric_tensor, op=dist.ReduceOp.SUM)
            reduced_metric = metric_tensor.item() / world_size
            aggregated_metrics[metric_name] = reduced_metric
        return aggregated_metrics
    else:
        return metrics 
開發者ID:allenai,項目名稱:allennlp,代碼行數:31,代碼來源:util.py

示例10: log_batch

# 需要導入模塊: from allennlp.models import model [as 別名]
# 或者: from allennlp.models.model import Model [as 別名]
def log_batch(
        self,
        model: Model,
        optimizer: Optimizer,
        batch_grad_norm: Optional[float],
        metrics: Dict[str, float],
        batch_group: List[List[TensorDict]],
        param_updates: Optional[Dict[str, torch.Tensor]],
    ) -> None:
        if self.should_log_this_batch():
            self.log_parameter_and_gradient_statistics(model, batch_grad_norm)
            self.log_learning_rates(model, optimizer)

            self.add_train_scalar("loss/loss_train", metrics["loss"])
            self.log_metrics({"epoch_metrics/" + k: v for k, v in metrics.items()})

        if self.should_log_histograms_this_batch():
            self.log_histograms(model)
            self.log_gradient_updates(model, param_updates)

        if self._batch_size_interval:
            # We're assuming here that `log_batch` will get called every batch, and only every
            # batch.  This is true with our current usage of this code (version 1.0); if that
            # assumption becomes wrong, this code will break.
            batch_group_size = sum(training_util.get_batch_size(batch) for batch in batch_group)
            self._batches_this_epoch += 1
            self._cumulative_batch_group_size += batch_group_size

            if (self._batches_this_epoch - 1) % self._batch_size_interval == 0:
                average = self._cumulative_batch_group_size / self._batches_this_epoch
                logger.info(f"current batch size: {batch_group_size} mean batch size: {average}")
                self.add_train_scalar("current_batch_size", batch_group_size)
                self.add_train_scalar("mean_batch_size", average) 
開發者ID:allenai,項目名稱:allennlp,代碼行數:35,代碼來源:tensorboard_writer.py

示例11: log_parameter_and_gradient_statistics

# 需要導入模塊: from allennlp.models import model [as 別名]
# 或者: from allennlp.models.model import Model [as 別名]
def log_parameter_and_gradient_statistics(self, model: Model, batch_grad_norm: float) -> None:
        """
        Send the mean and std of all parameters and gradients to tensorboard, as well
        as logging the average gradient norm.
        """
        if self._should_log_parameter_statistics:
            # Log parameter values to Tensorboard
            for name, param in model.named_parameters():
                if param.data.numel() > 0:
                    self.add_train_scalar("parameter_mean/" + name, param.data.mean())
                if param.data.numel() > 1:
                    self.add_train_scalar("parameter_std/" + name, param.data.std())
                if param.grad is not None:
                    if param.grad.is_sparse:

                        grad_data = param.grad.data._values()
                    else:
                        grad_data = param.grad.data

                    # skip empty gradients
                    if torch.prod(torch.tensor(grad_data.shape)).item() > 0:
                        self.add_train_scalar("gradient_mean/" + name, grad_data.mean())
                        if grad_data.numel() > 1:
                            self.add_train_scalar("gradient_std/" + name, grad_data.std())
                    else:
                        # no gradient for a parameter with sparse gradients
                        logger.info("No gradient for %s, skipping tensorboard logging.", name)
            # norm of gradients
            if batch_grad_norm is not None:
                self.add_train_scalar("gradient_norm", batch_grad_norm) 
開發者ID:allenai,項目名稱:allennlp,代碼行數:32,代碼來源:tensorboard_writer.py

示例12: log_histograms

# 需要導入模塊: from allennlp.models import model [as 別名]
# 或者: from allennlp.models.model import Model [as 別名]
def log_histograms(self, model: Model) -> None:
        """
        Send histograms of parameters to tensorboard.
        """
        if not self._histogram_parameters:
            # Avoiding calling this every batch.  If we ever use two separate models with a single
            # writer, this is wrong, but I doubt that will ever happen.
            self._histogram_parameters = set(
                model.get_parameters_for_histogram_tensorboard_logging()
            )
        for name, param in model.named_parameters():
            if name in self._histogram_parameters:
                self.add_train_histogram("parameter_histogram/" + name, param) 
開發者ID:allenai,項目名稱:allennlp,代碼行數:15,代碼來源:tensorboard_writer.py

示例13: log_gradient_updates

# 需要導入模塊: from allennlp.models import model [as 別名]
# 或者: from allennlp.models.model import Model [as 別名]
def log_gradient_updates(self, model: Model, param_updates: Dict[str, torch.Tensor]) -> None:
        for name, param in model.named_parameters():
            update_norm = torch.norm(param_updates[name].view(-1))
            param_norm = torch.norm(param.view(-1)).cpu()
            self.add_train_scalar(
                "gradient_update/" + name,
                update_norm / (param_norm + nn_util.tiny_value_of_dtype(param_norm.dtype)),
            ) 
開發者ID:allenai,項目名稱:allennlp,代碼行數:10,代碼來源:tensorboard_writer.py

示例14: test_trainer_raises_on_model_with_no_loss_key

# 需要導入模塊: from allennlp.models import model [as 別名]
# 或者: from allennlp.models.model import Model [as 別名]
def test_trainer_raises_on_model_with_no_loss_key(self):
        class FakeModel(Model):
            def forward(self, **kwargs):
                return {}

        with pytest.raises(RuntimeError):
            trainer = GradientDescentTrainer(
                FakeModel(None),
                self.optimizer,
                self.data_loader,
                num_epochs=2,
                serialization_dir=self.TEST_DIR,
            )
            trainer.train() 
開發者ID:allenai,項目名稱:allennlp,代碼行數:16,代碼來源:trainer_test.py

示例15: __init__

# 需要導入模塊: from allennlp.models import model [as 別名]
# 或者: from allennlp.models.model import Model [as 別名]
def __init__(self, model: Model, dataset_reader: DatasetReader) -> None:
        super().__init__(model, dataset_reader)
        labels = self._model.vocab.get_index_to_token_vocabulary("labels").values()
        #
        if "entails" in labels:
            self._entailment_idx = self._model.vocab.get_token_index("entails", "labels")
        elif "entailment" in labels:
            self._entailment_idx = self._model.vocab.get_token_index("entailment", "labels")
        else:
            raise Exception("No label for entailment found in the label space: {}".format(
                ",".join(labels))) 
開發者ID:allenai,項目名稱:scitail,代碼行數:13,代碼來源:decompatt_predictor.py


注:本文中的allennlp.models.model.Model方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。