當前位置: 首頁>>代碼示例>>Python>>正文


Python token_indexers.TokenIndexer方法代碼示例

本文整理匯總了Python中allennlp.data.token_indexers.TokenIndexer方法的典型用法代碼示例。如果您正苦於以下問題:Python token_indexers.TokenIndexer方法的具體用法?Python token_indexers.TokenIndexer怎麽用?Python token_indexers.TokenIndexer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在allennlp.data.token_indexers的用法示例。


在下文中一共展示了token_indexers.TokenIndexer方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from allennlp.data import token_indexers [as 別名]
# 或者: from allennlp.data.token_indexers import TokenIndexer [as 別名]
def __init__(self,
                 token_indexers: Dict[str, TokenIndexer] = None,
                 delimeters: dict = SEQ_DELIMETERS,
                 skip_correct: bool = False,
                 skip_complex: int = 0,
                 lazy: bool = False,
                 max_len: int = None,
                 test_mode: bool = False,
                 tag_strategy: str = "keep_one",
                 tn_prob: float = 0,
                 tp_prob: float = 0,
                 broken_dot_strategy: str = "keep") -> None:
        super().__init__(lazy)
        self._token_indexers = token_indexers or {'tokens': SingleIdTokenIndexer()}
        self._delimeters = delimeters
        self._max_len = max_len
        self._skip_correct = skip_correct
        self._skip_complex = skip_complex
        self._tag_strategy = tag_strategy
        self._broken_dot_strategy = broken_dot_strategy
        self._test_mode = test_mode
        self._tn_prob = tn_prob
        self._tp_prob = tp_prob 
開發者ID:plkmo,項目名稱:NLP_Toolkit,代碼行數:25,代碼來源:datareader.py

示例2: __init__

# 需要導入模塊: from allennlp.data import token_indexers [as 別名]
# 或者: from allennlp.data.token_indexers import TokenIndexer [as 別名]
def __init__(
        self,
        token_indexers: Dict[str, TokenIndexer] = None,
        tag_label: str = "ner",
        feature_labels: Sequence[str] = (),
        coding_scheme: str = "IOB1",
        label_namespace: str = "labels",
        **kwargs,
    ) -> None:
        super().__init__(**kwargs)
        self._token_indexers = token_indexers or {"tokens": SingleIdTokenIndexer()}
        if tag_label is not None and tag_label not in self._VALID_LABELS:
            raise ConfigurationError("unknown tag label type: {}".format(tag_label))
        for label in feature_labels:
            if label not in self._VALID_LABELS:
                raise ConfigurationError("unknown feature label type: {}".format(label))
        if coding_scheme not in ("IOB1", "BIOUL"):
            raise ConfigurationError("unknown coding_scheme: {}".format(coding_scheme))

        self.tag_label = tag_label
        self.feature_labels = set(feature_labels)
        self.coding_scheme = coding_scheme
        self.label_namespace = label_namespace
        self._original_coding_scheme = "IOB1" 
開發者ID:allenai,項目名稱:allennlp,代碼行數:26,代碼來源:conll2003.py

示例3: __init__

# 需要導入模塊: from allennlp.data import token_indexers [as 別名]
# 或者: from allennlp.data.token_indexers import TokenIndexer [as 別名]
def __init__(
        self,
        token_indexers: Dict[str, TokenIndexer] = None,
        tokenizer: Tokenizer = None,
        segment_sentences: bool = False,
        max_sequence_length: int = None,
        skip_label_indexing: bool = False,
        **kwargs,
    ) -> None:
        super().__init__(**kwargs)
        self._tokenizer = tokenizer or SpacyTokenizer()
        self._segment_sentences = segment_sentences
        self._max_sequence_length = max_sequence_length
        self._skip_label_indexing = skip_label_indexing
        self._token_indexers = token_indexers or {"tokens": SingleIdTokenIndexer()}
        if self._segment_sentences:
            self._sentence_segmenter = SpacySentenceSplitter() 
開發者ID:allenai,項目名稱:allennlp,代碼行數:19,代碼來源:text_classification_json.py

示例4: __init__

# 需要導入模塊: from allennlp.data import token_indexers [as 別名]
# 或者: from allennlp.data.token_indexers import TokenIndexer [as 別名]
def __init__(self,
                 token_indexers: Dict[str, TokenIndexer] = None,
                 lazy: bool = False,
                 example_filter=None,
                 wn_p_dict=None, wn_feature_list=wn_persistent_api.default_fn_list,
                 max_l=None) -> None:

        super().__init__(lazy=lazy)
        self._token_indexers = token_indexers or {'tokens': SingleIdTokenIndexer(namespace='tokens')}
        self._example_filter = example_filter
        self.wn_p_dict = wn_p_dict
        if wn_p_dict is None:
            raise ValueError("Need to specify WN feature dict for FEVER Reader.")
        self.wn_feature_list = wn_feature_list
        self.wn_feature_size = len(self.wn_feature_list) * 3
        self.max_l = max_l 
開發者ID:easonnie,項目名稱:combine-FEVER-NSMN,代碼行數:18,代碼來源:fever_reader_with_wn.py

示例5: __init__

# 需要導入模塊: from allennlp.data import token_indexers [as 別名]
# 或者: from allennlp.data.token_indexers import TokenIndexer [as 別名]
def __init__(self,
                 token_indexers: Dict[str, TokenIndexer] = None,
                 lazy: bool = False,
                 example_filter=None,
                 wn_p_dict=None, wn_feature_list=wn_persistent_api.default_fn_list,
                 max_l=None, num_encoding=True, shuffle_sentences=False, ablation=None) -> None:

        super().__init__(lazy=lazy)
        self._token_indexers = token_indexers or {'tokens': SingleIdTokenIndexer(namespace='tokens')}
        self._example_filter = example_filter
        self.wn_p_dict = wn_p_dict
        if wn_p_dict is None:
            raise ValueError("Need to specify WN feature dict for FEVER Reader.")
        self.wn_feature_list = wn_feature_list
        num_encoding_dim = 5 if num_encoding else 0
        self.wn_feature_size = len(self.wn_feature_list) * 3 + num_encoding_dim + 2
        self.max_l = max_l
        self.shuffle_sentences = shuffle_sentences
        self.ablation = ablation

        if self.ablation is not None and self.ablation['rm_wn']:
            self.wn_feature_size -= (len(self.wn_feature_list) * 3 + num_encoding_dim)
        elif self.ablation is not None and self.ablation['rm_simi']:
            self.wn_feature_size -= 2 
開發者ID:easonnie,項目名稱:combine-FEVER-NSMN,代碼行數:26,代碼來源:fever_reader_with_wn_simi_doc.py

示例6: __init__

# 需要導入模塊: from allennlp.data import token_indexers [as 別名]
# 或者: from allennlp.data.token_indexers import TokenIndexer [as 別名]
def __init__(
        self,
        target_namespace: str,
        source_tokenizer: Tokenizer = None,
        target_tokenizer: Tokenizer = None,
        source_token_indexers: Dict[str, TokenIndexer] = None,
        target_token_indexers: Dict[str, TokenIndexer] = None,
        lazy: bool = False,
    ) -> None:
        super().__init__(lazy)
        self._target_namespace = target_namespace
        self._source_tokenizer = source_tokenizer or SpacyTokenizer()
        self._target_tokenizer = target_tokenizer or self._source_tokenizer
        self._source_token_indexers = source_token_indexers or {
            "tokens": SingleIdTokenIndexer()
        }
        self._target_token_indexers = (
            target_token_indexers or self._source_token_indexers
        )
        warnings.warn(
            "The 'copynet' dataset reader has been deprecated in favor of the "
            "'copynet_seq2seq' dataset reader (now part of the AllenNLP library).",
            DeprecationWarning,
        ) 
開發者ID:epwalsh,項目名稱:nlp-models,代碼行數:26,代碼來源:copynet.py

示例7: __init__

# 需要導入模塊: from allennlp.data import token_indexers [as 別名]
# 或者: from allennlp.data.token_indexers import TokenIndexer [as 別名]
def __init__(
        self,
        target_namespace: str,
        source_tokenizer: Tokenizer = None,
        target_tokenizer: Tokenizer = None,
        source_token_indexers: Dict[str, TokenIndexer] = None,
        target_token_indexers: Dict[str, TokenIndexer] = None,
        lazy: bool = False,
    ) -> None:
        source_tokenizer = source_tokenizer or NL2BashWordSplitter()
        target_tokenizer = target_tokenizer or source_tokenizer
        super().__init__(
            target_namespace,
            source_tokenizer=source_tokenizer,
            target_tokenizer=target_tokenizer,
            source_token_indexers=source_token_indexers,
            target_token_indexers=target_token_indexers,
            lazy=lazy,
        ) 
開發者ID:epwalsh,項目名稱:nlp-models,代碼行數:21,代碼來源:nl2bash.py

示例8: __init__

# 需要導入模塊: from allennlp.data import token_indexers [as 別名]
# 或者: from allennlp.data.token_indexers import TokenIndexer [as 別名]
def __init__(
        self,
        lazy: bool = False,
        tokenizer: Tokenizer = None,
        sentence_token_indexers: Dict[str, TokenIndexer] = None,
        nonterminal_indexers: Dict[str, TokenIndexer] = None,
        terminal_indexers: Dict[str, TokenIndexer] = None,
        output_agendas: bool = True,
    ) -> None:
        super().__init__(lazy)
        self._tokenizer = tokenizer or SpacyTokenizer()
        self._sentence_token_indexers = sentence_token_indexers or {
            "tokens": SingleIdTokenIndexer()
        }
        self._nonterminal_indexers = nonterminal_indexers or {
            "tokens": SingleIdTokenIndexer("rule_labels")
        }
        self._terminal_indexers = terminal_indexers or {
            "tokens": SingleIdTokenIndexer("rule_labels")
        }
        self._output_agendas = output_agendas 
開發者ID:allenai,項目名稱:allennlp-semparse,代碼行數:23,代碼來源:nlvr.py

示例9: __init__

# 需要導入模塊: from allennlp.data import token_indexers [as 別名]
# 或者: from allennlp.data.token_indexers import TokenIndexer [as 別名]
def __init__(self,
                 lazy: bool = False,
                 tokenizer: Tokenizer = None,
                 token_indexers: Dict[str, TokenIndexer] = None,
                 words_per_instance: int = 35
                ) -> None:
        super().__init__(lazy)
        self._tokenizer = tokenizer or WordTokenizer(
            start_tokens=[START_SYMBOL],
            end_tokens=[END_SYMBOL]
        )
        self._token_indexers = token_indexers or {
            "tokens": SingleIdTokenIndexer(namespace="tokens", lowercase_tokens=True)
        }

        self._words_per_instance = words_per_instance 
開發者ID:dangitstam,項目名稱:topic-rnn,代碼行數:18,代碼來源:imdb_review_reader.py

示例10: __init__

# 需要導入模塊: from allennlp.data import token_indexers [as 別名]
# 或者: from allennlp.data.token_indexers import TokenIndexer [as 別名]
def __init__(self,
                 wordnet_entity_file: str,
                 token_indexers: Dict[str, TokenIndexer],
                 entity_indexer: TokenIndexer,
                 is_training: bool,
                 use_surface_form: bool = False,
                 should_remap_span_indices: bool = True,
                 extra_candidate_generators: Dict[str, MentionGenerator] = None):

        super().__init__(False)

        self.mention_generator = WordNetCandidateMentionGenerator(
                wordnet_entity_file, use_surface_form=use_surface_form
        )

        self.token_indexers = token_indexers
        self.entity_indexer = {"ids": entity_indexer}
        self.is_training = is_training
        self.should_remap_span_indices = should_remap_span_indices

        self.extra_candidate_generators = extra_candidate_generators 
開發者ID:allenai,項目名稱:kb,代碼行數:23,代碼來源:wordnet.py

示例11: __init__

# 需要導入模塊: from allennlp.data import token_indexers [as 別名]
# 或者: from allennlp.data.token_indexers import TokenIndexer [as 別名]
def __init__(self,
                 lazy: bool = False,
                 tokenizer: Tokenizer = None,
                 token_indexers: Dict[str, TokenIndexer] = None,
                 clean_citation: bool = True,
                 with_elmo: bool = False
                 # use_lexicon_features: bool = False,
                 # use_sparse_lexicon_features: bool = False
                 ) -> None:
        super().__init__(lazy)
        self._clean_citation = clean_citation
        self._tokenizer = tokenizer or WordTokenizer()
        if with_elmo:
            self._token_indexers = {"elmo": ELMoTokenCharactersIndexer(),
                                    "tokens": SingleIdTokenIndexer()}
        else:
            self._token_indexers = {"tokens": SingleIdTokenIndexer()} 
開發者ID:allenai,項目名稱:scicite,代碼行數:19,代碼來源:citation_data_reader_aclarc_aux.py

示例12: __init__

# 需要導入模塊: from allennlp.data import token_indexers [as 別名]
# 或者: from allennlp.data.token_indexers import TokenIndexer [as 別名]
def __init__(self,
                 lazy: bool = False,
                 tokenizer: Tokenizer = None,
                 token_indexers: Dict[str, TokenIndexer] = None,
                 use_lexicon_features: bool = False,
                 use_sparse_lexicon_features: bool = False,
                 with_elmo: bool = False
                 ) -> None:
        super().__init__(lazy)
        self._tokenizer = tokenizer or WordTokenizer()
        if with_elmo:
            self._token_indexers = {"elmo": ELMoTokenCharactersIndexer(),
                                    "tokens": SingleIdTokenIndexer()}
        else:
            self._token_indexers = {"tokens": SingleIdTokenIndexer()}
        self.use_lexicon_features = use_lexicon_features
        self.use_sparse_lexicon_features = use_sparse_lexicon_features
        if self.use_lexicon_features or self.use_sparse_lexicon_features:
            self.lexicons = {**ALL_ACTION_LEXICONS, **ALL_CONCEPT_LEXICONS} 
開發者ID:allenai,項目名稱:scicite,代碼行數:21,代碼來源:citation_data_reader_aclarc.py

示例13: __init__

# 需要導入模塊: from allennlp.data import token_indexers [as 別名]
# 或者: from allennlp.data.token_indexers import TokenIndexer [as 別名]
def __init__(self,
                 lazy: bool = False,
                 tokenizer: Tokenizer = None,
                 token_indexers: Dict[str, TokenIndexer] = None,
                 clean_citation: bool = True,
                 with_elmo: bool = False
                 ) -> None:
        super().__init__(lazy)
        self._clean_citation = clean_citation
        self._tokenizer = tokenizer or WordTokenizer()
        self._token_indexers = token_indexers or {"tokens": SingleIdTokenIndexer()}
        if with_elmo:
            self._token_indexers = {"elmo": ELMoTokenCharactersIndexer(),
                                    "tokens": SingleIdTokenIndexer()}
        else:
            self._token_indexers = {"tokens": SingleIdTokenIndexer()} 
開發者ID:allenai,項目名稱:scicite,代碼行數:18,代碼來源:citation_data_reader_scicite_aux.py

示例14: __init__

# 需要導入模塊: from allennlp.data import token_indexers [as 別名]
# 或者: from allennlp.data.token_indexers import TokenIndexer [as 別名]
def __init__(self,
                 tokenizer: Tokenizer = None,
                 token_indexers: Dict[str, TokenIndexer] = None,
                 source_add_start_token: bool = True,
                 max_doc_length:int = -1,
                 max_query_length:int = -1,
                 min_doc_length:int = -1,
                 min_query_length:int = -1,
                 lazy: bool = False) -> None:
        super().__init__(lazy)
        self._tokenizer = tokenizer or WordTokenizer() # little bit faster, useful for multicore proc. word_splitter=SimpleWordSplitter()
        self._token_indexers = token_indexers or {"tokens": SingleIdTokenIndexer(lowercase_tokens=True)}
        self._source_add_start_token = source_add_start_token
        self.max_doc_length = max_doc_length
        self.max_query_length = max_query_length
        self.min_doc_length = min_doc_length
        self.min_query_length = min_query_length

        self.padding_value = Token(text = "@@PADDING@@",text_id=0) 
開發者ID:sebastian-hofstaetter,項目名稱:transformer-kernel-ranking,代碼行數:21,代碼來源:ir_labeled_tuple_loader.py

示例15: __init__

# 需要導入模塊: from allennlp.data import token_indexers [as 別名]
# 或者: from allennlp.data.token_indexers import TokenIndexer [as 別名]
def __init__(self,
                 tokenizer: Tokenizer = None,
                 token_indexers: Dict[str, TokenIndexer] = None,
                 source_add_start_token: bool = True,
                 max_doc_length:int = -1,
                 max_query_length:int = -1,
                 min_doc_length:int = -1,
                 min_query_length:int = -1,
                 lazy: bool = False) -> None:
        super().__init__(lazy)
        self._tokenizer = tokenizer
        self._token_indexers = token_indexers
        self._source_add_start_token = source_add_start_token
        self.max_doc_length = max_doc_length
        self.max_query_length = max_query_length
        self.min_doc_length = min_doc_length
        self.min_query_length = min_query_length

        self.padding_value = Token(text = "[PAD]",text_id=0)
        self.sep_value = Token(text = "[SEP]") 
開發者ID:sebastian-hofstaetter,項目名稱:transformer-kernel-ranking,代碼行數:22,代碼來源:bert_labeled_tuple_loader.py


注:本文中的allennlp.data.token_indexers.TokenIndexer方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。