當前位置: 首頁>>代碼示例>>Python>>正文


Python instance.Instance方法代碼示例

本文整理匯總了Python中allennlp.data.instance.Instance方法的典型用法代碼示例。如果您正苦於以下問題:Python instance.Instance方法的具體用法?Python instance.Instance怎麽用?Python instance.Instance使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在allennlp.data.instance的用法示例。


在下文中一共展示了instance.Instance方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: text_to_instance

# 需要導入模塊: from allennlp.data import instance [as 別名]
# 或者: from allennlp.data.instance import Instance [as 別名]
def text_to_instance(self, context_tokens: List[Token], tokens: List[Token], tags: List[str] = None,
        intents: List[str] = None, dialog_act: Dict[str, Any] = None) -> Instance:  # type: ignore
        """
        We take `pre-tokenized` input here, because we don't have a tokenizer in this class.
        """
        # pylint: disable=arguments-differ
        fields: Dict[str, Field] = {}
        # print([t.text for t in context_tokens])
        fields["context_tokens"] = TextField(context_tokens, self._token_indexers)
        fields["tokens"] = TextField(tokens, self._token_indexers)
        fields["metadata"] = MetadataField({"words": [x.text for x in tokens]})
        if tags is not None:
            fields["tags"] = SequenceLabelField(tags, fields["tokens"])
        if intents is not None:
            fields["intents"] = MultiLabelField(intents, label_namespace="intent_labels")
        if dialog_act is not None:
            fields["metadata"] = MetadataField({"words": [x.text for x in tokens],
            'dialog_act': dialog_act})
        else:
            fields["metadata"] = MetadataField({"words": [x.text for x in tokens], 'dialog_act': {}})
        return Instance(fields) 
開發者ID:ConvLab,項目名稱:ConvLab,代碼行數:23,代碼來源:dataset_reader.py

示例2: text_to_instance

# 需要導入模塊: from allennlp.data import instance [as 別名]
# 或者: from allennlp.data.instance import Instance [as 別名]
def text_to_instance(self, tokens: List[Token], tags: List[str] = None, domain: str = None,
        intent: str = None, dialog_act: Dict[str, Any] = None) -> Instance:  # type: ignore
        """
        We take `pre-tokenized` input here, because we don't have a tokenizer in this class.
        """
        # pylint: disable=arguments-differ
        fields: Dict[str, Field] = {}
        sequence = TextField(tokens, self._token_indexers)
        fields["tokens"] = sequence
        if tags:
            fields["tags"] = SequenceLabelField(tags, sequence)
        if domain:
            fields["domain"] = LabelField(domain, label_namespace="domain_labels")
        if intent:
            fields["intent"] = LabelField(intent, label_namespace="intent_labels")
        if dialog_act is not None:
            fields["metadata"] = MetadataField({"words": [x.text for x in tokens],
            'dialog_act': dialog_act})
        else:
            fields["metadata"] = MetadataField({"words": [x.text for x in tokens], 'dialog_act': {}})
        return Instance(fields) 
開發者ID:ConvLab,項目名稱:ConvLab,代碼行數:23,代碼來源:dataset_reader.py

示例3: text_to_instance

# 需要導入模塊: from allennlp.data import instance [as 別名]
# 或者: from allennlp.data.instance import Instance [as 別名]
def text_to_instance(self,  # type: ignore
                         tokens: List[str],
                         entity_1: Tuple[int],
                         entity_2: Tuple[int],
                         label: str = None) -> Instance:
        # pylint: disable=arguments-differ
        fields: Dict[str, Field] = {}
        
        tokens = [OpenAISplitter._standardize(token) for token in tokens]
        tokens = ['__start__'] + tokens[entity_1[0]:entity_1[1]+1] + ['__del1__'] + tokens[entity_2[0]:entity_2[1]+1] + ['__del2__'] + tokens + ['__clf__']
            
        sentence = TextField([Token(text=t) for t in tokens], self._token_indexers)
        fields['sentence'] = sentence
        #fields['entity1'] = SpanField(*entity_1, sequence_field=sentence)
        #fields['entity2'] = SpanField(*entity_2, sequence_field=sentence)
        
        if label:
            fields['label'] = LabelField(label)

        return Instance(fields) 
開發者ID:DFKI-NLP,項目名稱:DISTRE,代碼行數:22,代碼來源:semeval_2010_task_8_reader.py

示例4: _read

# 需要導入模塊: from allennlp.data import instance [as 別名]
# 或者: from allennlp.data.instance import Instance [as 別名]
def _read(self, file_path: str) -> Iterable[Instance]:
        # if `file_path` is a URL, redirect to the cache
        file_path = cached_path(file_path)

        with open(file_path, "r") as data_file:
            logger.info("Reading instances from lines in file at: %s", file_path)

            # Group into alternative divider / sentence chunks.
            for is_divider, lines in itertools.groupby(data_file, _is_divider):
                # Ignore the divider chunks, so that `lines` corresponds to the words
                # of a single sentence.
                if not is_divider:
                    fields = [line.strip().split() for line in lines]
                    # unzipping trick returns tuples, but our Fields need lists
                    fields = [list(field) for field in zip(*fields)]
                    tokens_, _, _, pico_tags = fields
                    # TextField requires ``Token`` objects
                    tokens = [Token(token) for token in tokens_]

                    yield self.text_to_instance(tokens, pico_tags) 
開發者ID:allenai,項目名稱:scibert,代碼行數:22,代碼來源:ebmnlp.py

示例5: text_to_instance

# 需要導入模塊: from allennlp.data import instance [as 別名]
# 或者: from allennlp.data.instance import Instance [as 別名]
def text_to_instance(self, query_sequence: str, doc_pos_sequence: str, doc_neg_sequence: str) -> Instance:  # type: ignore
        # pylint: disable=arguments-differ
        query_tokenized = self._tokenizer.tokenize(query_sequence)
        if self.max_query_length > -1:
            query_tokenized = query_tokenized[:self.max_query_length]

        query_field = TextField(query_tokenized, self._token_indexers)
        
        doc_pos_tokenized = self._tokenizer.tokenize(doc_pos_sequence)
        if self.max_doc_length > -1:
            doc_pos_tokenized = doc_pos_tokenized[:self.max_doc_length]

        doc_pos_field = TextField(doc_pos_tokenized, self._token_indexers)

        doc_neg_tokenized = self._tokenizer.tokenize(doc_neg_sequence)
        if self.max_doc_length > -1:
            doc_neg_tokenized = doc_neg_tokenized[:self.max_doc_length]

        doc_neg_field = TextField(doc_neg_tokenized, self._token_indexers)

        return Instance({
            "query_tokens":query_field,
            "doc_pos_tokens":doc_pos_field,
            "doc_neg_tokens": doc_neg_field}) 
開發者ID:sebastian-hofstaetter,項目名稱:teaching,代碼行數:26,代碼來源:data_loading.py

示例6: text_to_instance

# 需要導入模塊: from allennlp.data import instance [as 別名]
# 或者: from allennlp.data.instance import Instance [as 別名]
def text_to_instance(self,  # type: ignore
                         item_id: Any,
                         question_text: str,
                         choice_text_list: List[str],
                         answer_id: int
                         ) -> Instance:
        # pylint: disable=arguments-differ
        fields: Dict[str, Field] = {}
        question_tokens = self._tokenizer.tokenize(question_text)
        choices_tokens_list = [self._tokenizer.tokenize(x) for x in choice_text_list]
        fields['question'] = TextField(question_tokens, self._token_indexers)
        fields['choices_list'] = ListField([TextField(x, self._token_indexers) for x in choices_tokens_list])
        fields['label'] = LabelField(answer_id, skip_indexing=True)

        metadata = {
            "id": item_id,
            "question_text": question_text,
            "choice_text_list": choice_text_list,
            "question_tokens": [x.text for x in question_tokens],
            "choice_tokens_list": [[x.text for x in ct] for ct in choices_tokens_list],
        }

        fields["metadata"] = MetadataField(metadata)

        return Instance(fields) 
開發者ID:allenai,項目名稱:OpenBookQA,代碼行數:27,代碼來源:arc_multichoice_json_reader.py

示例7: preprocess

# 需要導入模塊: from allennlp.data import instance [as 別名]
# 或者: from allennlp.data.instance import Instance [as 別名]
def preprocess(self, token_batch):
        seq_lens = [len(sequence) for sequence in token_batch if sequence]
        if not seq_lens:
            return []
        max_len = min(max(seq_lens), self.max_len)
        batches = []
        for indexer in self.indexers:
            batch = []
            for sequence in token_batch:
                tokens = sequence[:max_len]
                tokens = [Token(token) for token in ['$START'] + tokens]
                batch.append(Instance({'tokens': TextField(tokens, indexer)}))
            batch = Batch(batch)
            batch.index_instances(self.vocab)
            batches.append(batch)

        return batches 
開發者ID:plkmo,項目名稱:NLP_Toolkit,代碼行數:19,代碼來源:gec_model.py

示例8: get_padding_lengths

# 需要導入模塊: from allennlp.data import instance [as 別名]
# 或者: from allennlp.data.instance import Instance [as 別名]
def get_padding_lengths(self) -> Dict[str, Dict[str, int]]:
        """
        Gets the maximum padding lengths from all `Instances` in this batch.  Each `Instance`
        has multiple `Fields`, and each `Field` could have multiple things that need padding.
        We look at all fields in all instances, and find the max values for each (field_name,
        padding_key) pair, returning them in a dictionary.

        This can then be used to convert this batch into arrays of consistent length, or to set
        model parameters, etc.
        """
        padding_lengths: Dict[str, Dict[str, int]] = defaultdict(dict)
        all_instance_lengths: List[Dict[str, Dict[str, int]]] = [
            instance.get_padding_lengths() for instance in self.instances
        ]
        all_field_lengths: Dict[str, List[Dict[str, int]]] = defaultdict(list)
        for instance_lengths in all_instance_lengths:
            for field_name, instance_field_lengths in instance_lengths.items():
                all_field_lengths[field_name].append(instance_field_lengths)
        for field_name, field_lengths in all_field_lengths.items():
            for padding_key in field_lengths[0].keys():
                max_value = max(x.get(padding_key, 0) for x in field_lengths)
                padding_lengths[field_name][padding_key] = max_value
        return {**padding_lengths} 
開發者ID:allenai,項目名稱:allennlp,代碼行數:25,代碼來源:batch.py

示例9: print_statistics

# 需要導入模塊: from allennlp.data import instance [as 別名]
# 或者: from allennlp.data.instance import Instance [as 別名]
def print_statistics(self) -> None:
        # Make sure if has been indexed first
        sequence_field_lengths: Dict[str, List] = defaultdict(list)
        for instance in self.instances:
            if not instance.indexed:
                raise ConfigurationError(
                    "Instances must be indexed with vocabulary "
                    "before asking to print dataset statistics."
                )
            for field, field_padding_lengths in instance.get_padding_lengths().items():
                for key, value in field_padding_lengths.items():
                    sequence_field_lengths[f"{field}.{key}"].append(value)

        print("\n\n----Dataset Statistics----\n")
        for name, lengths in sequence_field_lengths.items():
            print(f"Statistics for {name}:")
            print(
                f"\tLengths: Mean: {numpy.mean(lengths)}, Standard Dev: {numpy.std(lengths)}, "
                f"Max: {numpy.max(lengths)}, Min: {numpy.min(lengths)}"
            )

        print("\n10 Random instances:")
        for i in numpy.random.randint(len(self.instances), size=10):
            print(f"Instance {i}:")
            print(f"\t{self.instances[i]}") 
開發者ID:allenai,項目名稱:allennlp,代碼行數:27,代碼來源:batch.py

示例10: _read

# 需要導入模塊: from allennlp.data import instance [as 別名]
# 或者: from allennlp.data.instance import Instance [as 別名]
def _read(self, file_path: str) -> Iterable[Instance]:
        # if `file_path` is a URL, redirect to the cache
        file_path = cached_path(file_path)

        with open(file_path, "r") as data_file:
            logger.info("Reading instances from lines in file at: %s", file_path)

            # Group into alternative divider / sentence chunks.
            for is_divider, lines in itertools.groupby(data_file, _is_divider):
                # Ignore the divider chunks, so that `lines` corresponds to the words
                # of a single sentence.
                if not is_divider:
                    fields = [line.strip().split() for line in lines]
                    # unzipping trick returns tuples, but our Fields need lists
                    fields = [list(field) for field in zip(*fields)]
                    tokens_, pos_tags, chunk_tags, ner_tags = fields
                    # TextField requires `Token` objects
                    tokens = [Token(token) for token in tokens_]

                    yield self.text_to_instance(tokens, pos_tags, chunk_tags, ner_tags) 
開發者ID:allenai,項目名稱:allennlp,代碼行數:22,代碼來源:conll2003.py

示例11: text_to_instance

# 需要導入模塊: from allennlp.data import instance [as 別名]
# 或者: from allennlp.data.instance import Instance [as 別名]
def text_to_instance(self, *inputs) -> Instance:
        """
        Does whatever tokenization or processing is necessary to go from textual input to an
        `Instance`.  The primary intended use for this is with a
        :class:`~allennlp.predictors.predictor.Predictor`, which gets text input as a JSON
        object and needs to process it to be input to a model.

        The intent here is to share code between :func:`_read` and what happens at
        model serving time, or any other time you want to make a prediction from new data.  We need
        to process the data in the same way it was done at training time.  Allowing the
        `DatasetReader` to process new text lets us accomplish this, as we can just call
        `DatasetReader.text_to_instance` when serving predictions.

        The input type here is rather vaguely specified, unfortunately.  The `Predictor` will
        have to make some assumptions about the kind of `DatasetReader` that it's using, in order
        to pass it the right information.
        """
        raise NotImplementedError 
開發者ID:allenai,項目名稱:allennlp,代碼行數:20,代碼來源:dataset_reader.py

示例12: text_to_instance

# 需要導入模塊: from allennlp.data import instance [as 別名]
# 或者: from allennlp.data.instance import Instance [as 別名]
def text_to_instance(self,
                         premise: str,
                         hypothesis: str,
                         hypothesis_structure: str,
                         label: str = None) -> Instance:
        fields: Dict[str, Field] = {}
        premise_tokens = self._tokenizer.tokenize(premise)[-self._max_tokens:]
        hypothesis_tokens = self._tokenizer.tokenize(hypothesis)[-self._max_tokens:]

        fields['premise'] = TextField(premise_tokens, self._token_indexers)
        fields['hypothesis'] = TextField(hypothesis_tokens, self._token_indexers)
        metadata = {
            'premise': premise,
            'hypothesis': hypothesis,
            'premise_tokens': [token.text for token in premise_tokens],
            'hypothesis_tokens': [token.text for token in hypothesis_tokens]
        }
        fields['metadata'] = MetadataField(metadata)
        self._add_structure_to_fields(hypothesis_structure, fields)
        if label:
            fields['label'] = LabelField(label)
        return Instance(fields) 
開發者ID:allenai,項目名稱:scitail,代碼行數:24,代碼來源:entailment_tuple_reader.py

示例13: text_to_instance

# 需要導入模塊: from allennlp.data import instance [as 別名]
# 或者: from allennlp.data.instance import Instance [as 別名]
def text_to_instance(self,  # type: ignore
                         premise: str,
                         hypothesis: str,
                         pid: str = None,
                         label: str = None) -> Instance:

        fields: Dict[str, Field] = {}

        premise_tokens = [Token(t) for t in premise.split(' ')]  # Removing code for parentheses in NLI
        hypothesis_tokens = [Token(t) for t in hypothesis.split(' ')]

        if self.max_l is not None:
            premise_tokens = premise_tokens[:self.max_l]
            hypothesis_tokens = hypothesis_tokens[:self.max_l]

        fields['premise'] = TextField(premise_tokens, self._token_indexers)
        fields['hypothesis'] = TextField(hypothesis_tokens, self._token_indexers)

        if label:
            fields['selection_label'] = LabelField(label, label_namespace='selection_labels')

        if pid:
            fields['pid'] = IdField(pid)

        return Instance(fields) 
開發者ID:easonnie,項目名稱:combine-FEVER-NSMN,代碼行數:27,代碼來源:fever_sselection_reader.py

示例14: text_to_instance

# 需要導入模塊: from allennlp.data import instance [as 別名]
# 或者: from allennlp.data.instance import Instance [as 別名]
def text_to_instance(self,  # type: ignore
                         premise: str,
                         hypothesis: str,
                         pid: str = None,
                         label: str = None) -> Instance:

        fields: Dict[str, Field] = {}

        premise_tokens = [Token(t) for t in premise.split(' ')]  # Removing code for parentheses in NLI
        hypothesis_tokens = [Token(t) for t in hypothesis.split(' ')]

        if self.max_l is not None:
            premise_tokens = premise_tokens[:self.max_l]
            hypothesis_tokens = hypothesis_tokens[:self.max_l]

        fields['premise'] = TextField(premise_tokens, self._token_indexers)
        fields['hypothesis'] = TextField(hypothesis_tokens, self._token_indexers)

        if label:
            fields['label'] = LabelField(label, label_namespace='labels')

        if pid:
            fields['pid'] = IdField(pid)

        return Instance(fields) 
開發者ID:easonnie,項目名稱:combine-FEVER-NSMN,代碼行數:27,代碼來源:fever_reader.py

示例15: text_to_instance

# 需要導入模塊: from allennlp.data import instance [as 別名]
# 或者: from allennlp.data.instance import Instance [as 別名]
def text_to_instance(self, # type: ignore
                         tokens             ,
                         ner_tags            = None)            :
        u"""
        We take `pre-tokenized` input here, because we don't have a tokenizer in this class.
        """
        # pylint: disable=arguments-differ
        sequence = TextField(tokens, self._token_indexers)
        instance_fields                   = {u'tokens': sequence}
        instance_fields[u"metadata"] = MetadataField({u"words": [x.text for x in tokens]})
        # Add "tag label" to instance
        if ner_tags is not None:
            if self._coding_scheme == u"BIOUL":
                ner_tags = to_bioul(ner_tags, encoding=u"BIO")
            instance_fields[u'tags'] = SequenceLabelField(ner_tags, sequence)
        return Instance(instance_fields) 
開發者ID:plasticityai,項目名稱:magnitude,代碼行數:18,代碼來源:ontonotes_ner.py


注:本文中的allennlp.data.instance.Instance方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。