本文整理匯總了Python中allennlp.data.fields.ArrayField方法的典型用法代碼示例。如果您正苦於以下問題:Python fields.ArrayField方法的具體用法?Python fields.ArrayField怎麽用?Python fields.ArrayField使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類allennlp.data.fields
的用法示例。
在下文中一共展示了fields.ArrayField方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_padding_handles_list_fields
# 需要導入模塊: from allennlp.data import fields [as 別名]
# 或者: from allennlp.data.fields import ArrayField [as 別名]
def test_padding_handles_list_fields(self):
array1 = ArrayField(numpy.ones([2, 3]))
array2 = ArrayField(numpy.ones([1, 5]))
empty_array = array1.empty_field()
list_field = ListField([array1, array2, empty_array])
returned_tensor = (
list_field.as_tensor(list_field.get_padding_lengths()).detach().cpu().numpy()
)
correct_tensor = numpy.array(
[
[[1.0, 1.0, 1.0, 0.0, 0.0], [1.0, 1.0, 1.0, 0.0, 0.0]],
[[1.0, 1.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0]],
[[0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0]],
]
)
numpy.testing.assert_array_equal(returned_tensor, correct_tensor)
示例2: test_padding_handles_list_fields_with_padding_values
# 需要導入模塊: from allennlp.data import fields [as 別名]
# 或者: from allennlp.data.fields import ArrayField [as 別名]
def test_padding_handles_list_fields_with_padding_values(self):
array1 = ArrayField(numpy.ones([2, 3]), padding_value=-1)
array2 = ArrayField(numpy.ones([1, 5]), padding_value=-1)
empty_array = array1.empty_field()
list_field = ListField([array1, array2, empty_array])
returned_tensor = (
list_field.as_tensor(list_field.get_padding_lengths()).detach().cpu().numpy()
)
correct_tensor = numpy.array(
[
[[1.0, 1.0, 1.0, -1.0, -1.0], [1.0, 1.0, 1.0, -1.0, -1.0]],
[[1.0, 1.0, 1.0, 1.0, 1.0], [-1.0, -1.0, -1.0, -1.0, -1.0]],
[[-1.0, -1.0, -1.0, -1.0, -1.0], [-1.0, -1.0, -1.0, -1.0, -1.0]],
]
)
numpy.testing.assert_array_equal(returned_tensor, correct_tensor)
示例3: test_alternative_dtypes
# 需要導入模塊: from allennlp.data import fields [as 別名]
# 或者: from allennlp.data.fields import ArrayField [as 別名]
def test_alternative_dtypes(self):
shape = [3, 4, 5, 6]
array = numpy.zeros(shape)
# Setting dtype to numpy.int64 should produce a torch.LongTensor when field is converted to
# a tensor
array_field1 = ArrayField(array, dtype=numpy.int64)
returned_tensor1 = array_field1.as_tensor(array_field1.get_padding_lengths())
assert returned_tensor1.dtype == torch.int64
# Setting dtype to numpy.uint8 should produce a torch.ByteTensor when field is converted to
# a tensor
array_field2 = ArrayField(array, dtype=numpy.uint8)
returned_tensor2 = array_field2.as_tensor(array_field2.get_padding_lengths())
assert returned_tensor2.dtype == torch.uint8
# Padding should not affect dtype
padding_lengths = {"dimension_" + str(i): 10 for i, _ in enumerate(shape)}
padded_tensor = array_field2.as_tensor(padding_lengths)
assert padded_tensor.dtype == torch.uint8
# Empty fields should have the same dtype
empty_field = array_field2.empty_field()
assert empty_field.dtype == array_field2.dtype
示例4: text_to_instance
# 需要導入模塊: from allennlp.data import fields [as 別名]
# 或者: from allennlp.data.fields import ArrayField [as 別名]
def text_to_instance(self, vec: str = None) -> Instance: # type: ignore
"""
Parameters
----------
text : ``str``, required.
The text to classify
label ``str``, optional, (default = None).
The label for this text.
Returns
-------
An ``Instance`` containing the following fields:
tokens : ``TextField``
The tokens in the sentence or phrase.
label : ``LabelField``
The label label of the sentence or phrase.
"""
# pylint: disable=arguments-differ
fields: Dict[str, Field] = {}
fields['tokens'] = ArrayField(vec)
return Instance(fields)
示例5: text_to_instance
# 需要導入模塊: from allennlp.data import fields [as 別名]
# 或者: from allennlp.data.fields import ArrayField [as 別名]
def text_to_instance(self, state: np.ndarray, action: int = None) -> Instance: # type: ignore
"""
"""
# pylint: disable=arguments-differ
fields: Dict[str, Field] = {}
fields["states"] = ArrayField(state)
if action is not None:
fields["actions"] = LabelField(action, skip_indexing=True)
return Instance(fields)
示例6: test_get_padding_lengths_correctly_returns_ordered_shape
# 需要導入模塊: from allennlp.data import fields [as 別名]
# 或者: from allennlp.data.fields import ArrayField [as 別名]
def test_get_padding_lengths_correctly_returns_ordered_shape(self):
shape = [3, 4, 5, 6]
array = numpy.zeros(shape)
array_field = ArrayField(array)
lengths = array_field.get_padding_lengths()
for i in range(len(lengths)):
assert lengths["dimension_{}".format(i)] == shape[i]
示例7: test_as_tensor_handles_larger_padding_dimensions
# 需要導入模塊: from allennlp.data import fields [as 別名]
# 或者: from allennlp.data.fields import ArrayField [as 別名]
def test_as_tensor_handles_larger_padding_dimensions(self):
shape = [3, 4]
array = numpy.ones(shape)
array_field = ArrayField(array)
padded_tensor = (
array_field.as_tensor({"dimension_0": 5, "dimension_1": 6}).detach().cpu().numpy()
)
numpy.testing.assert_array_equal(padded_tensor[:3, :4], array)
numpy.testing.assert_array_equal(padded_tensor[3:, 4:], 0.0)
示例8: test_printing_doesnt_crash
# 需要導入模塊: from allennlp.data import fields [as 別名]
# 或者: from allennlp.data.fields import ArrayField [as 別名]
def test_printing_doesnt_crash(self):
array = ArrayField(numpy.ones([2, 3]), padding_value=-1)
print(array)
示例9: test_as_tensor_with_scalar_keeps_dtype
# 需要導入模塊: from allennlp.data import fields [as 別名]
# 或者: from allennlp.data.fields import ArrayField [as 別名]
def test_as_tensor_with_scalar_keeps_dtype(self):
array = ArrayField(numpy.asarray(42, dtype=numpy.float32))
returned_tensor = array.as_tensor(array.get_padding_lengths())
assert returned_tensor.dtype == torch.float32
示例10: test_len_works_with_scalar
# 需要導入模塊: from allennlp.data import fields [as 別名]
# 或者: from allennlp.data.fields import ArrayField [as 別名]
def test_len_works_with_scalar(self):
array = ArrayField(numpy.asarray(42))
assert len(array) == 1
示例11: test_eq
# 需要導入模塊: from allennlp.data import fields [as 別名]
# 或者: from allennlp.data.fields import ArrayField [as 別名]
def test_eq(self):
array1 = ArrayField(numpy.asarray([1, 1, 1]))
array2 = ArrayField(numpy.asarray([[1, 1, 1], [1, 1, 1]]))
array3 = ArrayField(numpy.asarray([1, 1, 2]))
array4 = ArrayField(numpy.asarray([1, 1, 1]))
assert array1 != array2
assert array1 != array3
assert array1 == array4
示例12: test_get_padding_lengths_correctly_returns_ordered_shape
# 需要導入模塊: from allennlp.data import fields [as 別名]
# 或者: from allennlp.data.fields import ArrayField [as 別名]
def test_get_padding_lengths_correctly_returns_ordered_shape(self):
shape = [3, 4, 5, 6]
array = numpy.zeros(shape)
array_field = ArrayField(array)
lengths = array_field.get_padding_lengths()
for i in range(len(lengths)):
assert lengths[u"dimension_{}".format(i)] == shape[i]
示例13: test_as_tensor_handles_larger_padding_dimensions
# 需要導入模塊: from allennlp.data import fields [as 別名]
# 或者: from allennlp.data.fields import ArrayField [as 別名]
def test_as_tensor_handles_larger_padding_dimensions(self):
shape = [3, 4]
array = numpy.ones(shape)
array_field = ArrayField(array)
padded_tensor = array_field.as_tensor({u"dimension_0": 5, u"dimension_1": 6}).detach().cpu().numpy()
numpy.testing.assert_array_equal(padded_tensor[:3, :4], array)
numpy.testing.assert_array_equal(padded_tensor[3:, 4:], 0.)
示例14: test_padding_handles_list_fields
# 需要導入模塊: from allennlp.data import fields [as 別名]
# 或者: from allennlp.data.fields import ArrayField [as 別名]
def test_padding_handles_list_fields(self):
array1 = ArrayField(numpy.ones([2, 3]))
array2 = ArrayField(numpy.ones([1, 5]))
empty_array = array1.empty_field()
list_field = ListField([array1, array2, empty_array])
returned_tensor = list_field.as_tensor(list_field.get_padding_lengths()).detach().cpu().numpy()
correct_tensor = numpy.array([[[1., 1., 1., 0., 0.],
[1., 1., 1., 0., 0.]],
[[1., 1., 1., 1., 1.],
[0., 0., 0., 0., 0.]],
[[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.]]])
numpy.testing.assert_array_equal(returned_tensor, correct_tensor)
示例15: test_padding_handles_list_fields_with_padding_values
# 需要導入模塊: from allennlp.data import fields [as 別名]
# 或者: from allennlp.data.fields import ArrayField [as 別名]
def test_padding_handles_list_fields_with_padding_values(self):
array1 = ArrayField(numpy.ones([2, 3]), padding_value=-1)
array2 = ArrayField(numpy.ones([1, 5]), padding_value=-1)
empty_array = array1.empty_field()
list_field = ListField([array1, array2, empty_array])
returned_tensor = list_field.as_tensor(list_field.get_padding_lengths()).detach().cpu().numpy()
correct_tensor = numpy.array([[[1., 1., 1., -1., -1.],
[1., 1., 1., -1., -1.]],
[[1., 1., 1., 1., 1.],
[-1., -1., -1., -1., -1.]],
[[-1., -1., -1., -1., -1.],
[-1., -1., -1., -1., -1.]]])
numpy.testing.assert_array_equal(returned_tensor, correct_tensor)