當前位置: 首頁>>代碼示例>>Python>>正文


Python Vocabulary.from_params方法代碼示例

本文整理匯總了Python中allennlp.data.Vocabulary.from_params方法的典型用法代碼示例。如果您正苦於以下問題:Python Vocabulary.from_params方法的具體用法?Python Vocabulary.from_params怎麽用?Python Vocabulary.from_params使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在allennlp.data.Vocabulary的用法示例。


在下文中一共展示了Vocabulary.from_params方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: set_up_model

# 需要導入模塊: from allennlp.data import Vocabulary [as 別名]
# 或者: from allennlp.data.Vocabulary import from_params [as 別名]
def set_up_model(self, param_file, dataset_file):

        self.param_file = param_file
        params = Params.from_file(self.param_file)

        reader = DatasetReader.from_params(params["dataset_reader"])
        # The dataset reader might be lazy, but a lazy list here breaks some of our tests.
        instances = reader.read(str(dataset_file))
        # Use parameters for vocabulary if they are present in the config file, so that choices like
        # "non_padded_namespaces", "min_count" etc. can be set if needed.
        if "vocabulary" in params:
            vocab_params = params["vocabulary"]
            vocab = Vocabulary.from_params(params=vocab_params, instances=instances)
        else:
            vocab = Vocabulary.from_instances(instances)
        self.vocab = vocab
        self.instances = instances
        self.instances.index_with(vocab)
        self.model = Model.from_params(vocab=self.vocab, params=params["model"])

        # TODO(joelgrus) get rid of these
        # (a lot of the model tests use them, so they'll have to be changed)
        self.dataset = Batch(list(self.instances))
        self.dataset.index_instances(self.vocab) 
開發者ID:allenai,項目名稱:allennlp,代碼行數:26,代碼來源:model_test_case.py

示例2: set_up_model

# 需要導入模塊: from allennlp.data import Vocabulary [as 別名]
# 或者: from allennlp.data.Vocabulary import from_params [as 別名]
def set_up_model(self, param_file, dataset_file):
        # pylint: disable=attribute-defined-outside-init
        self.param_file = param_file
        params = Params.from_file(self.param_file)

        reader = DatasetReader.from_params(params[u'dataset_reader'])
        instances = reader.read(dataset_file)
        # Use parameters for vocabulary if they are present in the config file, so that choices like
        # "non_padded_namespaces", "min_count" etc. can be set if needed.
        if u'vocabulary' in params:
            vocab_params = params[u'vocabulary']
            vocab = Vocabulary.from_params(params=vocab_params, instances=instances)
        else:
            vocab = Vocabulary.from_instances(instances)
        self.vocab = vocab
        self.instances = instances
        self.model = Model.from_params(vocab=self.vocab, params=params[u'model'])

        # TODO(joelgrus) get rid of these
        # (a lot of the model tests use them, so they'll have to be changed)
        self.dataset = Batch(self.instances)
        self.dataset.index_instances(self.vocab) 
開發者ID:plasticityai,項目名稱:magnitude,代碼行數:24,代碼來源:model_test_case.py

示例3: get_bert_test_fixture

# 需要導入模塊: from allennlp.data import Vocabulary [as 別名]
# 或者: from allennlp.data.Vocabulary import from_params [as 別名]
def get_bert_test_fixture():
    embedder_params = {
        "type": "bert-pretrained",
        "pretrained_model": "tests/fixtures/bert/bert_test_fixture.tar.gz",
        "requires_grad": True,
        "top_layer_only": True,
    }
    embedder_params_copy = dict(embedder_params)
    embedder = TokenEmbedder.from_params(Params(embedder_params))


    indexer_params = {
        "type": "bert-pretrained",
        "pretrained_model": "tests/fixtures/bert/vocab.txt",
        "do_lowercase": True,
        "use_starting_offsets": True,
        "max_pieces": 512,
    }
    indexer_params_copy = dict(indexer_params)
    indexer = TokenIndexer.from_params(Params(indexer_params))

    return {'embedder': embedder, 'embedder_params': embedder_params_copy,
            'indexer': indexer, 'indexer_params': indexer_params_copy} 
開發者ID:allenai,項目名稱:kb,代碼行數:25,代碼來源:testing.py

示例4: test_kg_reader_with_eval

# 需要導入模塊: from allennlp.data import Vocabulary [as 別名]
# 或者: from allennlp.data.Vocabulary import from_params [as 別名]
def test_kg_reader_with_eval(self):
        train_file = 'tests/fixtures/kg_embeddings/wn18rr_train.txt'
        dev_file = 'tests/fixtures/kg_embeddings/wn18rr_dev.txt'

        train_instances = KGTupleReader().read(train_file)

        reader = KGTupleReader(extra_files_for_gold_pairs=[train_file])
        instances = reader.read(dev_file)
        self.assertEqual(len(instances), 2)

        vocab = Vocabulary.from_params(Params({}), train_instances + instances)
        iterator = BasicIterator(batch_size=32)
        iterator.index_with(vocab)
        for batch in iterator(instances, num_epochs=1, shuffle=False):
            pass

        expected_entity = [1, 5]
        expected_relation = ['_hypernym', '_hypernym_reverse']
        expected_entity2 = [[5, 2, 3], [1, 4]]
        self._check_batch(batch, vocab,
                          expected_entity, expected_relation, expected_entity2) 
開發者ID:allenai,項目名稱:kb,代碼行數:23,代碼來源:test_kg_embedding.py

示例5: test_read

# 需要導入模塊: from allennlp.data import Vocabulary [as 別名]
# 或者: from allennlp.data.Vocabulary import from_params [as 別名]
def test_read(self):
        params, file_paths = get_dataset_params_paths(["ner"])

        multitask_reader = DatasetReader.from_params(params)

        dataset = multitask_reader.read(file_paths)

        # get all the instances --  only should have "original_pos_tags"
        # for NER
        for name, instances in dataset.datasets.items():
            self.assertTrue(name in ('ner', 'ccg'))
            for instance in instances:
                if name == 'ner':
                    self.assertTrue("original_pos_tags" not in instance.fields)
                else:
                    self.assertTrue("original_pos_tags" in instance.fields)

        # when iterating directly, only get 'ner'
        for instance in dataset:
            self.assertTrue("original_pos_tags" not in instance.fields) 
開發者ID:allenai,項目名稱:kb,代碼行數:22,代碼來源:test_multitask.py

示例6: test_knowbert_wiki_wordnet

# 需要導入模塊: from allennlp.data import Vocabulary [as 別名]
# 或者: from allennlp.data.Vocabulary import from_params [as 別名]
def test_knowbert_wiki_wordnet(self):
        from kb.testing import get_bert_pretraining_reader_with_kg

        reader = get_bert_pretraining_reader_with_kg(
            mask_candidate_strategy='full_mask', masked_lm_prob=0.35, include_wiki=True)
        instances = reader.read("tests/fixtures/bert_pretraining/shard1.txt")

        vocab = Vocabulary.from_params(Params({
            "directory_path": "tests/fixtures/wordnet_wiki_vocab",
        }))

        iterator = BasicIterator()
        iterator.index_with(vocab)

        for batch in iterator(instances, num_epochs=1, shuffle=False):
            pass

        # hack, incompatitable fixtures...
        batch['tokens']['tokens'] = torch.min(batch['tokens']['tokens'], torch.tensor([17]))
        batch['lm_label_ids']['lm_labels'] = torch.min(batch['lm_label_ids']['lm_labels'], torch.tensor([17]))
        model = get_knowbert(vocab, None, include_wiki=True)
        output = model(**batch)
        loss = output['loss']
        loss.backward()
        self.assertTrue(True) 
開發者ID:allenai,項目名稱:kb,代碼行數:27,代碼來源:test_knowbert.py

示例7: set_up_model

# 需要導入模塊: from allennlp.data import Vocabulary [as 別名]
# 或者: from allennlp.data.Vocabulary import from_params [as 別名]
def set_up_model(self, param_file, dataset_file):
        # pylint: disable=attribute-defined-outside-init
        self.param_file = param_file
        params = Params.from_file(self.param_file)

        reader = DatasetReader.from_params(params['dataset_reader'])
        # The dataset reader might be lazy, but a lazy list here breaks some of our tests.
        instances = list(reader.read(str(dataset_file)))
        # Use parameters for vocabulary if they are present in the config file, so that choices like
        # "non_padded_namespaces", "min_count" etc. can be set if needed.
        if 'vocabulary' in params:
            vocab_params = params['vocabulary']
            vocab = Vocabulary.from_params(params=vocab_params, instances=instances)
        else:
            vocab = Vocabulary.from_instances(instances)
        self.vocab = vocab
        self.instances = instances
        self.model = Model.from_params(vocab=self.vocab, params=params['model'])

        # TODO(joelgrus) get rid of these
        # (a lot of the model tests use them, so they'll have to be changed)
        self.dataset = Batch(self.instances)
        self.dataset.index_instances(self.vocab) 
開發者ID:allenai,項目名稱:vampire,代碼行數:25,代碼來源:test_case.py

示例8: from_params

# 需要導入模塊: from allennlp.data import Vocabulary [as 別名]
# 或者: from allennlp.data.Vocabulary import from_params [as 別名]
def from_params(cls, params: Params) -> 'WordSplitter':
        params.assert_empty(cls.__name__)
        return cls() 
開發者ID:sheffieldnlp,項目名稱:fever-naacl-2018,代碼行數:5,代碼來源:sentence_train.py

示例9: setup_method

# 需要導入模塊: from allennlp.data import Vocabulary [as 別名]
# 或者: from allennlp.data.Vocabulary import from_params [as 別名]
def setup_method(self):
        super().setup_method()
        params = Params(
            {
                "model": {
                    "type": "simple_tagger",
                    "text_field_embedder": {
                        "token_embedders": {"tokens": {"type": "embedding", "embedding_dim": 5}}
                    },
                    "encoder": {"type": "lstm", "input_size": 5, "hidden_size": 7, "num_layers": 2},
                },
                "dataset_reader": {"type": "sequence_tagging"},
                "train_data_path": str(self.FIXTURES_ROOT / "data" / "sequence_tagging.tsv"),
                "validation_data_path": str(self.FIXTURES_ROOT / "data" / "sequence_tagging.tsv"),
                "data_loader": {"batch_size": 2},
                "trainer": {"cuda_device": -1, "num_epochs": 2, "optimizer": "adam"},
            }
        )
        all_datasets = datasets_from_params(params)
        vocab = Vocabulary.from_params(
            params.pop("vocabulary", {}),
            instances=(instance for dataset in all_datasets.values() for instance in dataset),
        )
        model = Model.from_params(vocab=vocab, params=params.pop("model"))
        train_data = all_datasets["train"]
        train_data.index_with(vocab)

        data_loader = DataLoader.from_params(dataset=train_data, params=params.pop("data_loader"))
        trainer_params = params.pop("trainer")
        serialization_dir = os.path.join(self.TEST_DIR, "test_search_learning_rate")

        self.trainer = Trainer.from_params(
            model=model,
            serialization_dir=serialization_dir,
            data_loader=data_loader,
            train_data=train_data,
            params=trainer_params,
            validation_data=None,
            validation_iterator=None,
        ) 
開發者ID:allenai,項目名稱:allennlp,代碼行數:42,代碼來源:find_learning_rate_test.py

示例10: make_vocab_from_params

# 需要導入模塊: from allennlp.data import Vocabulary [as 別名]
# 或者: from allennlp.data.Vocabulary import from_params [as 別名]
def make_vocab_from_params(params        , serialization_dir     ):
    prepare_environment(params)

    vocab_params = params.pop(u"vocabulary", {})
    os.makedirs(serialization_dir, exist_ok=True)
    vocab_dir = os.path.join(serialization_dir, u"vocabulary")

    if os.path.isdir(vocab_dir) and os.listdir(vocab_dir) is not None:
        raise ConfigurationError(u"The 'vocabulary' directory in the provided "
                                 u"serialization directory is non-empty")

    all_datasets = datasets_from_params(params)
    datasets_for_vocab_creation = set(params.pop(u"datasets_for_vocab_creation", all_datasets))

    for dataset in datasets_for_vocab_creation:
        if dataset not in all_datasets:
            raise ConfigurationError("invalid 'dataset_for_vocab_creation' {dataset}")

    logger.info(u"From dataset instances, %s will be considered for vocabulary creation.",
                u", ".join(datasets_for_vocab_creation))

    instances = [instance for key, dataset in list(all_datasets.items())
                 for instance in dataset
                 if key in datasets_for_vocab_creation]

    vocab = Vocabulary.from_params(vocab_params, instances)

    logger.info("writing the vocabulary to {vocab_dir}.")
    vocab.save_to_files(vocab_dir)
    logger.info(u"done creating vocab") 
開發者ID:plasticityai,項目名稱:magnitude,代碼行數:32,代碼來源:make_vocab.py

示例11: datasets_from_params

# 需要導入模塊: from allennlp.data import Vocabulary [as 別名]
# 或者: from allennlp.data.Vocabulary import from_params [as 別名]
def datasets_from_params(params        )                                 :
    u"""
    Load all the datasets specified by the config.
    """
    dataset_reader = DatasetReader.from_params(params.pop(u'dataset_reader'))
    validation_dataset_reader_params = params.pop(u"validation_dataset_reader", None)

    validation_and_test_dataset_reader                = dataset_reader
    if validation_dataset_reader_params is not None:
        logger.info(u"Using a separate dataset reader to load validation and test data.")
        validation_and_test_dataset_reader = DatasetReader.from_params(validation_dataset_reader_params)

    train_data_path = params.pop(u'train_data_path')
    logger.info(u"Reading training data from %s", train_data_path)
    train_data = dataset_reader.read(train_data_path)

    datasets                                = {u"train": train_data}

    validation_data_path = params.pop(u'validation_data_path', None)
    if validation_data_path is not None:
        logger.info(u"Reading validation data from %s", validation_data_path)
        validation_data = validation_and_test_dataset_reader.read(validation_data_path)
        datasets[u"validation"] = validation_data

    test_data_path = params.pop(u"test_data_path", None)
    if test_data_path is not None:
        logger.info(u"Reading test data from %s", test_data_path)
        test_data = validation_and_test_dataset_reader.read(test_data_path)
        datasets[u"test"] = test_data

    return datasets 
開發者ID:plasticityai,項目名稱:magnitude,代碼行數:33,代碼來源:train.py

示例12: write_for_official_eval

# 需要導入模塊: from allennlp.data import Vocabulary [as 別名]
# 或者: from allennlp.data.Vocabulary import from_params [as 別名]
def write_for_official_eval(model_archive_file, test_file, output_file,
                            label_ids_to_label):
    archive = load_archive(model_archive_file)
    model = archive.model

    reader = DatasetReader.from_params(archive.config['dataset_reader'])

    iterator = DataIterator.from_params(Params({"type": "basic", "batch_size": 4}))
    vocab = Vocabulary.from_params(archive.config['vocabulary'])
    iterator.index_with(vocab)

    model.cuda()
    model.eval()

    instances = reader.read(test_file)
    predictions = []
    for batch in iterator(instances, num_epochs=1, shuffle=False):
        batch = move_to_device(batch, cuda_device=0)
        output = model(**batch)

        batch_labels = [
            label_ids_to_label[i]
            for i in output['predictions'].cpu().numpy().tolist()
        ]

        predictions.extend(batch_labels)

    to_write = ''.join(["{}\t{}\n".format(i + 8001, e) for i, e in enumerate(model.metrics[0].pred)])
    with open(output_file, 'w') as fout:
        fout.write(to_write) 
開發者ID:allenai,項目名稱:kb,代碼行數:32,代碼來源:write_semeval2010_task8_for_official_eval.py

示例13: write_for_official_eval

# 需要導入模塊: from allennlp.data import Vocabulary [as 別名]
# 或者: from allennlp.data.Vocabulary import from_params [as 別名]
def write_for_official_eval(model_archive_file, test_file, output_file):
    archive = load_archive(model_archive_file)
    model = archive.model

    reader = DatasetReader.from_params(archive.config['dataset_reader'])

    iterator = DataIterator.from_params(Params({"type": "basic", "batch_size": 32}))
    vocab = Vocabulary.from_params(archive.config['vocabulary'])
    iterator.index_with(vocab)

    model.cuda()
    model.eval()

    label_ids_to_label = {0: 'F', 1: 'T'}

    instances = reader.read(test_file)
    predictions = []
    for batch in iterator(instances, num_epochs=1, shuffle=False):
        batch = move_to_device(batch, cuda_device=0)
        output = model(**batch)

        batch_labels = [
            label_ids_to_label[i]
            for i in output['predictions'].cpu().numpy().tolist()
        ]

        predictions.extend(batch_labels)

    assert len(predictions) == 1400

    with open(output_file, 'w') as fout:
        for p in predictions:
            fout.write("{}\n".format(p)) 
開發者ID:allenai,項目名稱:kb,代碼行數:35,代碼來源:write_wic_for_codalab.py

示例14: write_for_official_eval

# 需要導入模塊: from allennlp.data import Vocabulary [as 別名]
# 或者: from allennlp.data.Vocabulary import from_params [as 別名]
def write_for_official_eval(model_archive_file, test_file, output_file,
                            label_ids_to_label):
    archive = load_archive(model_archive_file)
    model = archive.model

    reader = DatasetReader.from_params(archive.config['dataset_reader'])

    iterator = DataIterator.from_params(Params({"type": "basic", "batch_size": 4}))
    vocab = Vocabulary.from_params(archive.config['vocabulary'])
    iterator.index_with(vocab)

    model.cuda()
    model.eval()

    instances = reader.read(test_file)
    predictions = []
    for batch in iterator(instances, num_epochs=1, shuffle=False):
        batch = move_to_device(batch, cuda_device=0)
        output = model(**batch)

        batch_labels = [
            label_ids_to_label[i]
            for i in output['predictions'].cpu().numpy().tolist()
        ]

        predictions.extend(batch_labels)


    with open(output_file, 'w') as fout:
        for p in predictions:
            fout.write("{}\n".format(p)) 
開發者ID:allenai,項目名稱:kb,代碼行數:33,代碼來源:write_tacred_for_official_scorer.py

示例15: __init__

# 需要導入模塊: from allennlp.data import Vocabulary [as 別名]
# 或者: from allennlp.data.Vocabulary import from_params [as 別名]
def __init__(self, model_archive, batch_size=32,
                       masking_strategy=None,
                       wordnet_entity_file=None, vocab_dir=None):

        # get bert_tokenizer_and_candidate_generator
        config = _extract_config_from_archive(cached_path(model_archive))

        # look for the bert_tokenizers and candidate_generator
        candidate_generator_params = _find_key(
            config['dataset_reader'].as_dict(), 'tokenizer_and_candidate_generator'
        )

        if wordnet_entity_file is not None:
            candidate_generator_params['entity_candidate_generators']['wordnet']['entity_file'] = wordnet_entity_file

        self.tokenizer_and_candidate_generator = TokenizerAndCandidateGenerator.\
                from_params(Params(candidate_generator_params))
        self.tokenizer_and_candidate_generator.whitespace_tokenize = False

        assert masking_strategy is None or masking_strategy == 'full_mask'
        self.masking_strategy = masking_strategy

        # need bert_tokenizer_and_candidate_generator
        if vocab_dir is not None:
            vocab_params = Params({"directory_path": vocab_dir})
        else:
            vocab_params = config['vocabulary']
        self.vocab = Vocabulary.from_params(vocab_params)

        self.iterator = DataIterator.from_params(
            Params({"type": "basic", "batch_size": batch_size})
        )
        self.iterator.index_with(self.vocab) 
開發者ID:allenai,項目名稱:kb,代碼行數:35,代碼來源:knowbert_utils.py


注:本文中的allennlp.data.Vocabulary.from_params方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。