本文整理匯總了Python中allennlp.common.Params方法的典型用法代碼示例。如果您正苦於以下問題:Python common.Params方法的具體用法?Python common.Params怎麽用?Python common.Params使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類allennlp.common
的用法示例。
在下文中一共展示了common.Params方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: from_params
# 需要導入模塊: from allennlp import common [as 別名]
# 或者: from allennlp.common import Params [as 別名]
def from_params(cls, params: Params) -> 'ArcMultiChoiceWithFactsTextJsonReaderMultiSource':
# read tokenizers
field_tokenizers = tokenizer_dict_from_params(params.get('tokenizers', {}))
token_indexers = token_indexer_dict_from_params(params.get('token_indexers', {}))
# external knowledge
external_knowledge_params = params.pop('external_knowledge')
choice_value_type = params.get('choice_value_type', None)
question_value_type = params.get('question_value_type', None)
no_relevant_fact_add = params.get('no_relevant_fact_add', False)
no_relevant_fact_text = params.get('no_relevant_fact_text', NO_RELEVANT_FACT_TEXT)
lazy = params.pop('lazy', False)
# params.assert_empty(cls.__name__)
return ArcMultiChoiceWithFactsTextJsonReaderMultiSource(field_tokenizers=field_tokenizers,
token_indexers=token_indexers,
external_know_config=external_knowledge_params,
choice_value_type=choice_value_type,
question_value_type=question_value_type,
no_relevant_fact_add=no_relevant_fact_add,
no_relevant_fact_text=no_relevant_fact_text,
lazy=lazy)
開發者ID:allenai,項目名稱:OpenBookQA,代碼行數:27,代碼來源:arc_multichoice_with_facts_text_json_reader_multi_source.py
示例2: tokenizer_dict_from_params
# 需要導入模塊: from allennlp import common [as 別名]
# 或者: from allennlp.common import Params [as 別名]
def tokenizer_dict_from_params(params: Params) -> 'Dict[str, Tokenizer]': # type: ignore
"""
``Tokenizer`` can be used in a dictionary, with each ``Tokenizer`` getting a
name. The specification for this in a ``Params`` object is typically ``{"name" ->
{tokenizer_params}}``. This method reads that whole set of parameters and returns a
dictionary suitable for use in a ``TextField``.
Because default values for token indexers are typically handled in the calling class to
this and are based on checking for ``None``, if there were no parameters specifying any
tokenizers in the given ``params``, we return ``None`` instead of an empty dictionary.
"""
tokenizers = {}
for name, indexer_params in params.items():
tokenizers[name] = Tokenizer.from_params(indexer_params)
if tokenizers == {}:
tokenizers = None
return tokenizers
示例3: token_indexer_dict_from_params
# 需要導入模塊: from allennlp import common [as 別名]
# 或者: from allennlp.common import Params [as 別名]
def token_indexer_dict_from_params(params: Params) -> 'Dict[str, TokenIndexer]': # type: ignore
"""
We typically use ``TokenIndexers`` in a dictionary, with each ``TokenIndexer`` getting a
name. The specification for this in a ``Params`` object is typically ``{"name" ->
{indexer_params}}``. This method reads that whole set of parameters and returns a
dictionary suitable for use in a ``TextField``.
Because default values for token indexers are typically handled in the calling class to
this and are based on checking for ``None``, if there were no parameters specifying any
token indexers in the given ``params``, we return ``None`` instead of an empty dictionary.
"""
token_indexers = {}
for name, indexer_params in params.items():
token_indexers[name] = TokenIndexer.from_params(indexer_params)
if token_indexers == {}:
token_indexers = None
return token_indexers
示例4: update_params
# 需要導入模塊: from allennlp import common [as 別名]
# 或者: from allennlp.common import Params [as 別名]
def update_params(params: Params,
update_dict:Dict[str, Any],
update_if_exists = False):
"""
Updates AllenNLP Params object. This is used to automatically parameters of components and then pass them to
from_params method
:param params: The params object to update
:param update_dict: The parameters to update. This is a flat dictionary of {"key1->key2":"value"}
that updates the params hierarchically where key1 is a parent of key2
:param update_if_exists: If we want to update the parameter only if it exists.
:return:
"""
params_dict = params.as_dict()
if not update_if_exists:
params_dict.update(update_dict)
else:
for k,v in update_dict.items():
if k in params_dict:
params_dict[k] = v
elif "->" in k:
try_set_val_by_hier_key(params_dict, clean_split(k, "->"), v, False)
return Params(params_dict)
示例5: from_params
# 需要導入模塊: from allennlp import common [as 別名]
# 或者: from allennlp.common import Params [as 別名]
def from_params(cls, vocab: Vocabulary, params: Params) -> 'CrfTagger':
embedder_params = params.pop("text_field_embedder")
text_field_embedder = TextFieldEmbedder.from_params(vocab, embedder_params)
encoder = Seq2SeqEncoder.from_params(params.pop("encoder"))
label_namespace = params.pop("label_namespace", "labels")
constraint_type = params.pop("constraint_type", None)
dropout = params.pop("dropout", None)
include_start_end_transitions = params.pop("include_start_end_transitions", True)
initializer = InitializerApplicator.from_params(params.pop('initializer', []))
regularizer = RegularizerApplicator.from_params(params.pop('regularizer', []))
params.assert_empty(cls.__name__)
return cls(vocab=vocab,
text_field_embedder=text_field_embedder,
encoder=encoder,
label_namespace=label_namespace,
constraint_type=constraint_type,
dropout=dropout,
include_start_end_transitions=include_start_end_transitions,
initializer=initializer,
regularizer=regularizer)
示例6: setup_method
# 需要導入模塊: from allennlp import common [as 別名]
# 或者: from allennlp.common import Params [as 別名]
def setup_method(self):
super().setup_method()
self.params = lambda: Params(
{
"model": {
"type": "simple_tagger",
"text_field_embedder": {
"token_embedders": {"tokens": {"type": "embedding", "embedding_dim": 5}}
},
"encoder": {"type": "lstm", "input_size": 5, "hidden_size": 7, "num_layers": 2},
},
"dataset_reader": {"type": "sequence_tagging"},
"train_data_path": str(self.FIXTURES_ROOT / "data" / "sequence_tagging.tsv"),
"validation_data_path": str(self.FIXTURES_ROOT / "data" / "sequence_tagging.tsv"),
"data_loader": {"batch_size": 2},
"trainer": {"cuda_device": -1, "num_epochs": 2, "optimizer": "adam"},
}
)
示例7: test_find_learning_rate_multi_gpu
# 需要導入模塊: from allennlp import common [as 別名]
# 或者: from allennlp.common import Params [as 別名]
def test_find_learning_rate_multi_gpu(self):
params = self.params()
del params["trainer"]["cuda_device"]
params["distributed"] = Params({})
params["distributed"]["cuda_devices"] = [0, 1]
with pytest.raises(AssertionError) as execinfo:
find_learning_rate_model(
params,
os.path.join(self.TEST_DIR, "test_find_learning_rate_multi_gpu"),
start_lr=1e-5,
end_lr=1,
num_batches=100,
linear_steps=True,
stopping_factor=None,
force=False,
)
assert "DistributedDataParallel" in str(execinfo.value)
示例8: test_train_model
# 需要導入模塊: from allennlp import common [as 別名]
# 或者: from allennlp.common import Params [as 別名]
def test_train_model(self):
params = lambda: Params(
{
"model": {"type": "constant"},
"dataset_reader": {"type": "sequence_tagging"},
"train_data_path": SEQUENCE_TAGGING_DATA_PATH,
"validation_data_path": SEQUENCE_TAGGING_DATA_PATH,
"data_loader": {"batch_size": 2},
"trainer": {"type": "no_op"},
}
)
serialization_dir = self.TEST_DIR / "serialization_directory"
train_model(params(), serialization_dir=serialization_dir)
archive = load_archive(str(serialization_dir / "model.tar.gz"))
model = archive.model
assert model.forward(torch.tensor([1, 2, 3]))["class"] == torch.tensor(98)
assert model.vocab.get_vocab_size() == 9
示例9: test_from_params_builders_encoder_correctly
# 需要導入模塊: from allennlp import common [as 別名]
# 或者: from allennlp.common import Params [as 別名]
def test_from_params_builders_encoder_correctly(self):
# We're just making sure parameters get passed through correctly here, and that the basic
# API works.
params = Params(
{
"type": "lstm",
"bidirectional": True,
"num_layers": 3,
"input_size": 5,
"hidden_size": 7,
}
)
encoder = Seq2VecEncoder.from_params(params)
assert encoder.__class__.__name__ == "LstmSeq2VecEncoder"
assert encoder._module.__class__.__name__ == "LSTM"
assert encoder._module.num_layers == 3
assert encoder._module.input_size == 5
assert encoder._module.hidden_size == 7
assert encoder._module.bidirectional is True
assert encoder._module.batch_first is True
示例10: test_forward_does_an_additive_product
# 需要導入模塊: from allennlp import common [as 別名]
# 或者: from allennlp.common import Params [as 別名]
def test_forward_does_an_additive_product(self):
params = Params({"vector_dim": 2, "matrix_dim": 3, "normalize": False})
additive = AdditiveAttention.from_params(params)
additive._w_matrix = Parameter(torch.Tensor([[-0.2, 0.3], [-0.5, 0.5]]))
additive._u_matrix = Parameter(torch.Tensor([[0.0, 1.0], [1.0, 1.0], [1.0, -1.0]]))
additive._v_vector = Parameter(torch.Tensor([[1.0], [-1.0]]))
vectors = torch.FloatTensor([[0.7, -0.8], [0.4, 0.9]])
matrices = torch.FloatTensor(
[
[[1.0, -1.0, 3.0], [0.5, -0.3, 0.0], [0.2, -1.0, 1.0], [0.7, 0.8, -1.0]],
[[-2.0, 3.0, -3.0], [0.6, 0.2, 2.0], [0.5, -0.4, -1.0], [0.2, 0.2, 0.0]],
]
)
result = additive(vectors, matrices).detach().numpy()
assert result.shape == (2, 4)
assert_almost_equal(
result,
[
[1.975072, -0.04997836, 1.2176098, -0.9205586],
[-1.4851665, 1.489604, -1.890285, -1.0672251],
],
)
示例11: test_forward_works_with_projection_layer
# 需要導入模塊: from allennlp import common [as 別名]
# 或者: from allennlp.common import Params [as 別名]
def test_forward_works_with_projection_layer(self):
vocab = Vocabulary()
vocab.add_token_to_namespace("the")
vocab.add_token_to_namespace("a")
params = Params(
{
"pretrained_file": str(
self.FIXTURES_ROOT / "embeddings/glove.6B.300d.sample.txt.gz"
),
"embedding_dim": 300,
"projection_dim": 20,
}
)
embedding_layer = Embedding.from_params(params, vocab=vocab)
input_tensor = torch.LongTensor([[3, 2, 1, 0]])
embedded = embedding_layer(input_tensor).data.numpy()
assert embedded.shape == (1, 4, 20)
input_tensor = torch.LongTensor([[[3, 2, 1, 0]]])
embedded = embedding_layer(input_tensor).data.numpy()
assert embedded.shape == (1, 1, 4, 20)
示例12: test_embedding_layer_actually_initializes_word_vectors_correctly
# 需要導入模塊: from allennlp import common [as 別名]
# 或者: from allennlp.common import Params [as 別名]
def test_embedding_layer_actually_initializes_word_vectors_correctly(self):
vocab = Vocabulary()
vocab.add_token_to_namespace("word")
vocab.add_token_to_namespace("word2")
unicode_space = "\xa0\xa0\xa0\xa0\xa0\xa0\xa0\xa0"
vocab.add_token_to_namespace(unicode_space)
embeddings_filename = str(self.TEST_DIR / "embeddings.gz")
with gzip.open(embeddings_filename, "wb") as embeddings_file:
embeddings_file.write("word 1.0 2.3 -1.0\n".encode("utf-8"))
embeddings_file.write(f"{unicode_space} 3.4 3.3 5.0\n".encode("utf-8"))
params = Params({"pretrained_file": embeddings_filename, "embedding_dim": 3})
embedding_layer = Embedding.from_params(params, vocab=vocab)
word_vector = embedding_layer.weight.data[vocab.get_token_index("word")]
assert numpy.allclose(word_vector.numpy(), numpy.array([1.0, 2.3, -1.0]))
word_vector = embedding_layer.weight.data[vocab.get_token_index(unicode_space)]
assert numpy.allclose(word_vector.numpy(), numpy.array([3.4, 3.3, 5.0]))
word_vector = embedding_layer.weight.data[vocab.get_token_index("word2")]
assert not numpy.allclose(word_vector.numpy(), numpy.array([1.0, 2.3, -1.0]))
示例13: test_embedding_vocab_extension_with_specified_namespace
# 需要導入模塊: from allennlp import common [as 別名]
# 或者: from allennlp.common import Params [as 別名]
def test_embedding_vocab_extension_with_specified_namespace(self):
vocab = Vocabulary()
vocab.add_token_to_namespace("word1", "tokens_a")
vocab.add_token_to_namespace("word2", "tokens_a")
embedding_params = Params({"vocab_namespace": "tokens_a", "embedding_dim": 10})
embedder = Embedding.from_params(embedding_params, vocab=vocab)
original_weight = embedder.weight
assert original_weight.shape[0] == 4
extension_counter = {"tokens_a": {"word3": 1}}
vocab._extend(extension_counter)
embedder.extend_vocab(vocab, "tokens_a") # specified namespace
extended_weight = embedder.weight
assert extended_weight.shape[0] == 5
assert torch.all(extended_weight[:4, :] == original_weight[:4, :])
示例14: test_embedding_vocab_extension_with_default_namespace
# 需要導入模塊: from allennlp import common [as 別名]
# 或者: from allennlp.common import Params [as 別名]
def test_embedding_vocab_extension_with_default_namespace(self):
vocab = Vocabulary()
vocab.add_token_to_namespace("word1")
vocab.add_token_to_namespace("word2")
embedding_params = Params({"vocab_namespace": "tokens", "embedding_dim": 10})
embedder = Embedding.from_params(embedding_params, vocab=vocab)
original_weight = embedder.weight
assert original_weight.shape[0] == 4
extension_counter = {"tokens": {"word3": 1}}
vocab._extend(extension_counter)
embedder.extend_vocab(vocab) # default namespace
extended_weight = embedder.weight
assert extended_weight.shape[0] == 5
assert torch.all(extended_weight[:4, :] == original_weight[:4, :])
示例15: test_embedding_vocab_extension_is_no_op_when_extension_should_not_happen
# 需要導入模塊: from allennlp import common [as 別名]
# 或者: from allennlp.common import Params [as 別名]
def test_embedding_vocab_extension_is_no_op_when_extension_should_not_happen(self):
# Case1: When vocab is already in sync with embeddings it should be a no-op.
vocab = Vocabulary({"tokens": {"word1": 1, "word2": 1}})
embedding_params = Params({"vocab_namespace": "tokens", "embedding_dim": 10})
embedder = Embedding.from_params(embedding_params, vocab=vocab)
original_weight = embedder.weight
embedder.extend_vocab(vocab, "tokens")
assert torch.all(embedder.weight == original_weight)
# Case2: Shouldn't wrongly assuming "tokens" namespace for extension if no
# information on vocab_namespece is available. Rather log a warning and be a no-op.
vocab = Vocabulary()
vocab.add_token_to_namespace("word1", "tokens")
vocab.add_token_to_namespace("word2", "tokens")
embedding_params = Params({"vocab_namespace": "tokens", "embedding_dim": 10})
embedder = Embedding.from_params(embedding_params, vocab=vocab)
# Previous models won't have _vocab_namespace attribute. Force it to be None
embedder._vocab_namespace = None
embedder.weight = torch.nn.Parameter(embedder.weight[:1, :])
assert embedder.weight.shape[0] == 1
embedder.extend_vocab(vocab) # Don't specify namespace
assert embedder.weight.shape[0] == 1