當前位置: 首頁>>代碼示例>>Python>>正文


Python Params.from_file方法代碼示例

本文整理匯總了Python中allennlp.common.Params.from_file方法的典型用法代碼示例。如果您正苦於以下問題:Python Params.from_file方法的具體用法?Python Params.from_file怎麽用?Python Params.from_file使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在allennlp.common.Params的用法示例。


在下文中一共展示了Params.from_file方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: set_up_model

# 需要導入模塊: from allennlp.common import Params [as 別名]
# 或者: from allennlp.common.Params import from_file [as 別名]
def set_up_model(self, param_file, dataset_file):

        self.param_file = param_file
        params = Params.from_file(self.param_file)

        reader = DatasetReader.from_params(params["dataset_reader"])
        # The dataset reader might be lazy, but a lazy list here breaks some of our tests.
        instances = reader.read(str(dataset_file))
        # Use parameters for vocabulary if they are present in the config file, so that choices like
        # "non_padded_namespaces", "min_count" etc. can be set if needed.
        if "vocabulary" in params:
            vocab_params = params["vocabulary"]
            vocab = Vocabulary.from_params(params=vocab_params, instances=instances)
        else:
            vocab = Vocabulary.from_instances(instances)
        self.vocab = vocab
        self.instances = instances
        self.instances.index_with(vocab)
        self.model = Model.from_params(vocab=self.vocab, params=params["model"])

        # TODO(joelgrus) get rid of these
        # (a lot of the model tests use them, so they'll have to be changed)
        self.dataset = Batch(list(self.instances))
        self.dataset.index_instances(self.vocab) 
開發者ID:allenai,項目名稱:allennlp,代碼行數:26,代碼來源:model_test_case.py

示例2: test_train_can_fine_tune_model_from_archive

# 需要導入模塊: from allennlp.common import Params [as 別名]
# 或者: from allennlp.common.Params import from_file [as 別名]
def test_train_can_fine_tune_model_from_archive(self):
        params = Params.from_file(
            self.FIXTURES_ROOT / "basic_classifier" / "experiment_from_archive.jsonnet"
        )
        train_loop = TrainModel.from_params(
            params=params, serialization_dir=self.TEST_DIR, local_rank=0, batch_weight_key=""
        )
        train_loop.run()

        model = Model.from_archive(
            self.FIXTURES_ROOT / "basic_classifier" / "serialization" / "model.tar.gz"
        )

        # This is checking that the vocabulary actually got extended.  The data that we're using for
        # training is different from the data we used to produce the model archive, and we set
        # parameters such that the vocab should have been extended.
        assert train_loop.model.vocab.get_vocab_size() > model.vocab.get_vocab_size() 
開發者ID:allenai,項目名稱:allennlp,代碼行數:19,代碼來源:train_test.py

示例3: test_transferring_of_modules_ensures_type_consistency

# 需要導入模塊: from allennlp.common import Params [as 別名]
# 或者: from allennlp.common.Params import from_file [as 別名]
def test_transferring_of_modules_ensures_type_consistency(self):

        model_archive = str(
            self.FIXTURES_ROOT / "basic_classifier" / "serialization" / "model.tar.gz"
        )
        trained_model = load_archive(model_archive).model

        config_file = str(self.FIXTURES_ROOT / "basic_classifier" / "experiment_seq2seq.jsonnet")
        model_params = Params.from_file(config_file).pop("model").as_dict(quiet=True)

        # Override only text_field_embedder and make it load Seq2SeqEncoder
        model_params["text_field_embedder"] = {
            "_pretrained": {
                "archive_file": model_archive,
                "module_path": "_seq2seq_encoder._module",
            }
        }
        with pytest.raises(ConfigurationError):
            Model.from_params(vocab=trained_model.vocab, params=Params(model_params)) 
開發者ID:allenai,項目名稱:allennlp,代碼行數:21,代碼來源:from_params_test.py

示例4: test_mismatching_dimensions_throws_configuration_error

# 需要導入模塊: from allennlp.common import Params [as 別名]
# 或者: from allennlp.common.Params import from_file [as 別名]
def test_mismatching_dimensions_throws_configuration_error(self):
        params = Params.from_file(self.param_file)
        # Make the phrase layer wrong - it should be 10 to match
        # the embedding + char cnn dimensions.
        params[u"model"][u"phrase_layer"][u"input_size"] = 12
        with pytest.raises(ConfigurationError):
            Model.from_params(vocab=self.vocab, params=params.pop(u"model"))

        params = Params.from_file(self.param_file)
        # Make the modeling layer input_dimension wrong - it should be 40 to match
        # 4 * output_dim of the phrase_layer.
        params[u"model"][u"phrase_layer"][u"input_size"] = 30
        with pytest.raises(ConfigurationError):
            Model.from_params(vocab=self.vocab, params=params.pop(u"model"))

        params = Params.from_file(self.param_file)
        # Make the modeling layer input_dimension wrong - it should be 70 to match
        # 4 * phrase_layer.output_dim + 3 * modeling_layer.output_dim.
        params[u"model"][u"span_end_encoder"][u"input_size"] = 50
        with pytest.raises(ConfigurationError):
            Model.from_params(vocab=self.vocab, params=params.pop(u"model")) 
開發者ID:plasticityai,項目名稱:magnitude,代碼行數:23,代碼來源:bidaf_test.py

示例5: set_up_model

# 需要導入模塊: from allennlp.common import Params [as 別名]
# 或者: from allennlp.common.Params import from_file [as 別名]
def set_up_model(self, param_file, dataset_file):
        # pylint: disable=attribute-defined-outside-init
        self.param_file = param_file
        params = Params.from_file(self.param_file)

        reader = DatasetReader.from_params(params[u'dataset_reader'])
        instances = reader.read(dataset_file)
        # Use parameters for vocabulary if they are present in the config file, so that choices like
        # "non_padded_namespaces", "min_count" etc. can be set if needed.
        if u'vocabulary' in params:
            vocab_params = params[u'vocabulary']
            vocab = Vocabulary.from_params(params=vocab_params, instances=instances)
        else:
            vocab = Vocabulary.from_instances(instances)
        self.vocab = vocab
        self.instances = instances
        self.model = Model.from_params(vocab=self.vocab, params=params[u'model'])

        # TODO(joelgrus) get rid of these
        # (a lot of the model tests use them, so they'll have to be changed)
        self.dataset = Batch(self.instances)
        self.dataset.index_instances(self.vocab) 
開發者ID:plasticityai,項目名稱:magnitude,代碼行數:24,代碼來源:model_test_case.py

示例6: set_up_model

# 需要導入模塊: from allennlp.common import Params [as 別名]
# 或者: from allennlp.common.Params import from_file [as 別名]
def set_up_model(self, param_file, dataset_file):
        # pylint: disable=attribute-defined-outside-init
        self.param_file = param_file
        params = Params.from_file(self.param_file)

        reader = DatasetReader.from_params(params['dataset_reader'])
        # The dataset reader might be lazy, but a lazy list here breaks some of our tests.
        instances = list(reader.read(str(dataset_file)))
        # Use parameters for vocabulary if they are present in the config file, so that choices like
        # "non_padded_namespaces", "min_count" etc. can be set if needed.
        if 'vocabulary' in params:
            vocab_params = params['vocabulary']
            vocab = Vocabulary.from_params(params=vocab_params, instances=instances)
        else:
            vocab = Vocabulary.from_instances(instances)
        self.vocab = vocab
        self.instances = instances
        self.model = Model.from_params(vocab=self.vocab, params=params['model'])

        # TODO(joelgrus) get rid of these
        # (a lot of the model tests use them, so they'll have to be changed)
        self.dataset = Batch(self.instances)
        self.dataset.index_instances(self.vocab) 
開發者ID:allenai,項目名稱:vampire,代碼行數:25,代碼來源:test_case.py

示例7: train_model_from_file

# 需要導入模塊: from allennlp.common import Params [as 別名]
# 或者: from allennlp.common.Params import from_file [as 別名]
def train_model_from_file(parameter_filename: str,
                          serialization_dir: str,
                          overrides: str = "",
                          file_friendly_logging: bool = False,
                          recover: bool = False,
                          force: bool = False) -> Model:
    """
    A wrapper around :func:`train_model` which loads the params from a file.

    Parameters
    ----------
    parameter_filename : ``str``
        A json parameter file specifying an AllenNLP experiment.
    serialization_dir : ``str``
        The directory in which to save results and logs. We just pass this along to
        :func:`train_model`.
    overrides : ``str``
        A JSON string that we will use to override values in the input parameter file.
    file_friendly_logging : ``bool``, optional (default=False)
        If ``True``, we make our output more friendly to saved model files.  We just pass this
        along to :func:`train_model`.
    recover : ``bool`, optional (default=False)
        If ``True``, we will try to recover a training run from an existing serialization
        directory.  This is only intended for use when something actually crashed during the middle
        of a run.  For continuing training a model on new data, see the ``fine-tune`` command.
    force : ``bool``, optional (default=False)
        If ``True``, we will overwrite the serialization directory if it already exists.
    """
    # Load the experiment config from a file and pass it to ``train_model``.
    params = Params.from_file(parameter_filename, overrides)
    return train_model(params, serialization_dir, file_friendly_logging, recover, force) 
開發者ID:ConvLab,項目名稱:ConvLab,代碼行數:33,代碼來源:train.py

示例8: find_learning_rate_from_args

# 需要導入模塊: from allennlp.common import Params [as 別名]
# 或者: from allennlp.common.Params import from_file [as 別名]
def find_learning_rate_from_args(args: argparse.Namespace) -> None:
    """
    Start learning rate finder for given args
    """
    params = Params.from_file(args.param_path, args.overrides)
    find_learning_rate_model(
        params,
        args.serialization_dir,
        start_lr=args.start_lr,
        end_lr=args.end_lr,
        num_batches=args.num_batches,
        linear_steps=args.linear,
        stopping_factor=args.stopping_factor,
        force=args.force,
    ) 
開發者ID:allenai,項目名稱:allennlp,代碼行數:17,代碼來源:find_learning_rate.py

示例9: test_train_model_can_instantiate_from_params

# 需要導入模塊: from allennlp.common import Params [as 別名]
# 或者: from allennlp.common.Params import from_file [as 別名]
def test_train_model_can_instantiate_from_params(self):
        params = Params.from_file(self.FIXTURES_ROOT / "simple_tagger" / "experiment.json")

        # Can instantiate from base class params
        TrainModel.from_params(
            params=params, serialization_dir=self.TEST_DIR, local_rank=0, batch_weight_key=""
        ) 
開發者ID:allenai,項目名稱:allennlp,代碼行數:9,代碼來源:train_test.py

示例10: train_fixture_gpu

# 需要導入模塊: from allennlp.common import Params [as 別名]
# 或者: from allennlp.common.Params import from_file [as 別名]
def train_fixture_gpu(config_prefix: str) -> None:
    config_file = config_prefix + "experiment.json"
    serialization_dir = config_prefix + "serialization"
    params = Params.from_file(config_file)
    params["trainer"]["cuda_device"] = 0

    # train this one to a tempdir
    tempdir = tempfile.gettempdir()
    train_model(params, tempdir)

    # now copy back the weights and and archived model
    shutil.copy(os.path.join(tempdir, "best.th"), os.path.join(serialization_dir, "best_gpu.th"))
    shutil.copy(
        os.path.join(tempdir, "model.tar.gz"), os.path.join(serialization_dir, "model_gpu.tar.gz")
    ) 
開發者ID:allenai,項目名稱:allennlp,代碼行數:17,代碼來源:train_fixtures.py

示例11: cache_vocab

# 需要導入模塊: from allennlp.common import Params [as 別名]
# 或者: from allennlp.common.Params import from_file [as 別名]
def cache_vocab(params: Params, vocab_config_path: str = None):
    """
    Caches the vocabulary given in the Params to the filesystem. Useful for large datasets that are run repeatedly.
    :param params: the AllenNLP Params
    :param vocab_config_path: an optional config path for constructing the vocab
    """
    if "vocabulary" not in params or "directory_path" not in params["vocabulary"]:
        return

    vocab_path = params["vocabulary"]["directory_path"]

    if os.path.exists(vocab_path):
        if os.listdir(vocab_path):
            return

        # Remove empty vocabulary directory to make AllenNLP happy
        try:
            os.rmdir(vocab_path)
        except OSError:
            pass

    vocab_config_path = vocab_config_path if vocab_config_path else VOCAB_CONFIG_PATH

    params = merge_configs([params, Params.from_file(vocab_config_path)])
    params["vocabulary"].pop("directory_path", None)
    make_vocab_from_params(params, os.path.split(vocab_path)[0]) 
開發者ID:Hyperparticle,項目名稱:udify,代碼行數:28,代碼來源:util.py

示例12: fine_tune_model_from_file_paths

# 需要導入模塊: from allennlp.common import Params [as 別名]
# 或者: from allennlp.common.Params import from_file [as 別名]
def fine_tune_model_from_file_paths(model_archive_path     ,
                                    config_file     ,
                                    serialization_dir     ,
                                    overrides      = u"",
                                    extend_vocab       = False,
                                    file_friendly_logging       = False)         :
    u"""
    A wrapper around :func:`fine_tune_model` which loads the model archive from a file.

    Parameters
    ----------
    model_archive_path : ``str``
        Path to a saved model archive that is the result of running the ``train`` command.
    config_file : ``str``
        A configuration file specifying how to continue training.  The format is identical to the
        configuration file for the ``train`` command, but any contents in the ``model`` section is
        ignored (as we are using the provided model archive instead).
    serialization_dir : ``str``
        The directory in which to save results and logs. We just pass this along to
        :func:`fine_tune_model`.
    overrides : ``str``
        A JSON string that we will use to override values in the input parameter file.
    file_friendly_logging : ``bool``, optional (default=False)
        If ``True``, we make our output more friendly to saved model files.  We just pass this
        along to :func:`fine_tune_model`.
    """
    # We don't need to pass in `cuda_device` here, because the trainer will call `model.cuda()` if
    # necessary.
    archive = load_archive(model_archive_path)
    params = Params.from_file(config_file, overrides)
    return fine_tune_model(model=archive.model,
                           params=params,
                           serialization_dir=serialization_dir,
                           extend_vocab=extend_vocab,
                           file_friendly_logging=file_friendly_logging) 
開發者ID:plasticityai,項目名稱:magnitude,代碼行數:37,代碼來源:fine_tune.py

示例13: train_model_from_file

# 需要導入模塊: from allennlp.common import Params [as 別名]
# 或者: from allennlp.common.Params import from_file [as 別名]
def train_model_from_file(parameter_filename     ,
                          serialization_dir     ,
                          overrides      = u"",
                          file_friendly_logging       = False,
                          recover       = False)         :
    u"""
    A wrapper around :func:`train_model` which loads the params from a file.

    Parameters
    ----------
    param_path : ``str``
        A json parameter file specifying an AllenNLP experiment.
    serialization_dir : ``str``
        The directory in which to save results and logs. We just pass this along to
        :func:`train_model`.
    overrides : ``str``
        A JSON string that we will use to override values in the input parameter file.
    file_friendly_logging : ``bool``, optional (default=False)
        If ``True``, we make our output more friendly to saved model files.  We just pass this
        along to :func:`train_model`.
    recover : ``bool`, optional (default=False)
        If ``True``, we will try to recover a training run from an existing serialization
        directory.  This is only intended for use when something actually crashed during the middle
        of a run.  For continuing training a model on new data, see the ``fine-tune`` command.
    """
    # Load the experiment config from a file and pass it to ``train_model``.
    params = Params.from_file(parameter_filename, overrides)
    return train_model(params, serialization_dir, file_friendly_logging, recover) 
開發者ID:plasticityai,項目名稱:magnitude,代碼行數:30,代碼來源:train.py

示例14: test_file_archiving

# 需要導入模塊: from allennlp.common import Params [as 別名]
# 或者: from allennlp.common.Params import from_file [as 別名]
def test_file_archiving(self):
        # This happens to be a good place to test auxiliary file archiving.
        # Train the model
        params = Params.from_file(self.FIXTURES_ROOT / u'elmo' / u'config' / u'characters_token_embedder.json')
        serialization_dir = os.path.join(self.TEST_DIR, u'serialization')
        train_model(params, serialization_dir)

        # Inspect the archive
        archive_file = os.path.join(serialization_dir, u'model.tar.gz')
        unarchive_dir = os.path.join(self.TEST_DIR, u'unarchive')
        with tarfile.open(archive_file, u'r:gz') as archive:
            archive.extractall(unarchive_dir)

        # It should contain `files_to_archive.json`
        fta_file = os.path.join(unarchive_dir, u'files_to_archive.json')
        assert os.path.exists(fta_file)

        # Which should properly contain { flattened_key -> original_filename }
        with open(fta_file) as fta:
            files_to_archive = json.loads(fta.read())

        assert files_to_archive == {
                u'model.text_field_embedder.token_embedders.elmo.options_file':
                        unicode(pathlib.Path(u'allennlp') / u'tests' / u'fixtures' / u'elmo' / u'options.json'),
                u'model.text_field_embedder.token_embedders.elmo.weight_file':
                        unicode(pathlib.Path(u'allennlp') / u'tests' / u'fixtures' / u'elmo' / u'lm_weights.hdf5'),
        }

        # Check that the unarchived contents of those files match the original contents.
        for key, original_filename in list(files_to_archive.items()):
            new_filename = os.path.join(unarchive_dir, u"fta", key)
            assert filecmp.cmp(original_filename, new_filename) 
開發者ID:plasticityai,項目名稱:magnitude,代碼行數:34,代碼來源:elmo_token_embedder_test.py

示例15: test_forward_with_epoch_num_changes_cost_weight

# 需要導入模塊: from allennlp.common import Params [as 別名]
# 或者: from allennlp.common.Params import from_file [as 別名]
def test_forward_with_epoch_num_changes_cost_weight(self):
        # Redefining model. We do not want this to change the state of ``self.model``.
        params = Params.from_file(self.param_file)
        model = Model.from_params(vocab=self.vocab, params=params[u'model'])
        # Initial cost weight, before forward is called.
        assert model._checklist_cost_weight == 0.8
        iterator = EpochTrackingBucketIterator(sorting_keys=[[u'sentence', u'num_tokens']])
        cost_weights = []
        for epoch_data in iterator(self.dataset, num_epochs=4):
            model.forward(**epoch_data)
            cost_weights.append(model._checklist_cost_weight)
        # The config file has ``wait_num_epochs`` set to 0, so the model starts decreasing the cost
        # weight at epoch 0 itself.
        assert_almost_equal(cost_weights, [0.72, 0.648, 0.5832, 0.52488]) 
開發者ID:plasticityai,項目名稱:magnitude,代碼行數:16,代碼來源:nlvr_coverage_semantic_parser_test.py


注:本文中的allennlp.common.Params.from_file方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。