本文整理匯總了Python中absl.testing.parameterized.parameters方法的典型用法代碼示例。如果您正苦於以下問題:Python parameterized.parameters方法的具體用法?Python parameterized.parameters怎麽用?Python parameterized.parameters使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類absl.testing.parameterized
的用法示例。
在下文中一共展示了parameterized.parameters方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_basic_encode_decode_tf_constructor_parameters
# 需要導入模塊: from absl.testing import parameterized [as 別名]
# 或者: from absl.testing.parameterized import parameters [as 別名]
def test_basic_encode_decode_tf_constructor_parameters(self):
"""Tests the core funcionality with `tf.Variable` constructor parameters."""
a_var = tf.compat.v1.get_variable('a_var', initializer=self._DEFAULT_A)
b_var = tf.compat.v1.get_variable('b_var', initializer=self._DEFAULT_B)
stage = test_utils.SimpleLinearEncodingStage(a_var, b_var)
with self.cached_session() as sess:
sess.run(tf.compat.v1.global_variables_initializer())
x = self.default_input()
encode_params, decode_params = stage.get_params()
encoded_x, decoded_x = self.encode_decode_x(stage, x, encode_params,
decode_params)
test_data = self.evaluate_test_data(
test_utils.TestData(x, encoded_x, decoded_x))
self.common_asserts_for_test_data(test_data)
# Change the variables and verify the behavior of stage changes.
self.evaluate(
[tf.compat.v1.assign(a_var, 5.0),
tf.compat.v1.assign(b_var, 6.0)])
test_data = self.evaluate_test_data(
test_utils.TestData(x, encoded_x, decoded_x))
self.assertAllClose(test_data.x * 5.0 + 6.0,
test_data.encoded_x[self._ENCODED_VALUES_KEY])
示例2: test_dynamic_graph_convolution_keras_layer_exception_not_raised_shapes
# 需要導入模塊: from absl.testing import parameterized [as 別名]
# 或者: from absl.testing.parameterized import parameters [as 別名]
def test_dynamic_graph_convolution_keras_layer_exception_not_raised_shapes(
self, batch_size, num_vertices, in_channels, out_channels, reduction):
"""Check if the convolution parameters and output have correct shapes."""
if not tf.executing_eagerly():
return
data, neighbors = _dummy_data(batch_size, num_vertices, in_channels)
layer = gc_layer.DynamicGraphConvolutionKerasLayer(
num_output_channels=out_channels,
reduction=reduction)
try:
output = layer(inputs=[data, neighbors], sizes=None)
except Exception as e: # pylint: disable=broad-except
self.fail("Exception raised: %s" % str(e))
self.assertAllEqual((batch_size, num_vertices, out_channels), output.shape)
示例3: test_get_defun_argspec_with_typed_non_eager_defun
# 需要導入模塊: from absl.testing import parameterized [as 別名]
# 或者: from absl.testing.parameterized import parameters [as 別名]
def test_get_defun_argspec_with_typed_non_eager_defun(self):
# In a tf.function with a defined input signature, **kwargs or default
# values are not allowed, but *args are, and the input signature may overlap
# with *args.
fn = tf.function(lambda x, y, *z: None, (
tf.TensorSpec(None, tf.int32),
tf.TensorSpec(None, tf.bool),
tf.TensorSpec(None, tf.float32),
tf.TensorSpec(None, tf.float32),
))
self.assertEqual(
collections.OrderedDict(function_utils.get_signature(fn).parameters),
collections.OrderedDict(
x=inspect.Parameter('x', inspect.Parameter.POSITIONAL_OR_KEYWORD),
y=inspect.Parameter('y', inspect.Parameter.POSITIONAL_OR_KEYWORD),
z=inspect.Parameter('z', inspect.Parameter.VAR_POSITIONAL),
))
示例4: test_get_signature_with_class_instance_method
# 需要導入模塊: from absl.testing import parameterized [as 別名]
# 或者: from absl.testing.parameterized import parameters [as 別名]
def test_get_signature_with_class_instance_method(self):
class C:
def __init__(self, x):
self._x = x
def foo(self, y):
return self._x * y
c = C(5)
signature = function_utils.get_signature(c.foo)
self.assertEqual(
signature.parameters,
collections.OrderedDict(
y=inspect.Parameter('y', inspect.Parameter.POSITIONAL_OR_KEYWORD)))
示例5: _modify_class
# 需要導入模塊: from absl.testing import parameterized [as 別名]
# 或者: from absl.testing.parameterized import parameters [as 別名]
def _modify_class(class_object, testcases, naming_type):
assert not getattr(class_object, '_test_method_ids', None), (
'Cannot add parameters to %s. Either it already has parameterized '
'methods, or its super class is also a parameterized class.' % (
class_object,))
class_object._test_method_ids = test_method_ids = {}
for name, obj in six.iteritems(class_object.__dict__.copy()):
if (name.startswith(unittest.TestLoader.testMethodPrefix)
and isinstance(obj, types.FunctionType)):
delattr(class_object, name)
methods = {}
_update_class_dict_for_param_test_case(
class_object.__name__, methods, test_method_ids, name,
_ParameterizedTestIter(obj, testcases, naming_type, name))
for name, meth in six.iteritems(methods):
setattr(class_object, name, meth)
示例6: parameters
# 需要導入模塊: from absl.testing import parameterized [as 別名]
# 或者: from absl.testing.parameterized import parameters [as 別名]
def parameters(*testcases):
"""A decorator for creating parameterized tests.
See the module docstring for a usage example.
Args:
*testcases: Parameters for the decorated method, either a single
iterable, or a list of tuples/dicts/objects (for tests with only one
argument).
Raises:
NoTestsError: Raised when the decorator generates no tests.
Returns:
A test generator to be handled by TestGeneratorMetaclass.
"""
return _parameter_decorator(_ARGUMENT_REPR, testcases)
示例7: testFactorisedKLGaussian
# 需要導入模塊: from absl.testing import parameterized [as 別名]
# 或者: from absl.testing.parameterized import parameters [as 別名]
def testFactorisedKLGaussian(self, dist1_type, dist2_type):
"""Tests that the factorised KL terms sum up to the true KL."""
dist1, dist1_mean, dist1_cov = self._create_gaussian(dist1_type)
dist2, dist2_mean, dist2_cov = self._create_gaussian(dist2_type)
both_diagonal = _is_diagonal(dist1.scale) and _is_diagonal(dist2.scale)
if both_diagonal:
dist1_cov = dist1.parameters['scale_diag']
dist2_cov = dist2.parameters['scale_diag']
kl = tfp.distributions.kl_divergence(dist1, dist2)
kl_mean, kl_cov = distribution_ops.factorised_kl_gaussian(
dist1_mean,
dist1_cov,
dist2_mean,
dist2_cov,
both_diagonal=both_diagonal)
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
actual_kl, kl_mean_np, kl_cov_np = sess.run([kl, kl_mean, kl_cov])
self.assertAllClose(actual_kl, kl_mean_np + kl_cov_np, rtol=1e-4)
示例8: _get_attributes_test_params
# 需要導入模塊: from absl.testing import parameterized [as 別名]
# 或者: from absl.testing.parameterized import parameters [as 別名]
def _get_attributes_test_params():
model = core.MjModel.from_xml_path(HUMANOID_XML_PATH)
data = core.MjData(model)
# Get the names of the non-private attributes of model and data through
# introspection. These are passed as parameters to each of the test methods
# in AttributesTest.
array_args = []
scalar_args = []
skipped_args = []
for parent_name, parent_obj in zip(("model", "data"), (model, data)):
for attr_name in dir(parent_obj):
if not attr_name.startswith("_"): # Skip 'private' attributes
args = (parent_name, attr_name)
attr = getattr(parent_obj, attr_name)
if isinstance(attr, ARRAY_TYPES):
array_args.append(args)
elif isinstance(attr, SCALAR_TYPES):
scalar_args.append(args)
elif callable(attr):
# Methods etc. should be covered specifically in CoreTest.
continue
else:
skipped_args.append(args)
return array_args, scalar_args, skipped_args
示例9: _runSingleTrainingStep
# 需要導入模塊: from absl.testing import parameterized [as 別名]
# 或者: from absl.testing.parameterized import parameters [as 別名]
def _runSingleTrainingStep(self, architecture, loss_fn, penalty_fn):
parameters = {
"architecture": architecture,
"lambda": 1,
"z_dim": 128,
}
with gin.unlock_config():
gin.bind_parameter("penalty.fn", penalty_fn)
gin.bind_parameter("loss.fn", loss_fn)
model_dir = self._get_empty_model_dir()
run_config = tf.contrib.tpu.RunConfig(
model_dir=model_dir,
tpu_config=tf.contrib.tpu.TPUConfig(iterations_per_loop=1))
dataset = datasets.get_dataset("cifar10")
gan = SSGAN(
dataset=dataset,
parameters=parameters,
model_dir=model_dir,
g_optimizer_fn=tf.train.AdamOptimizer,
g_lr=0.0002,
rotated_batch_size=4)
estimator = gan.as_estimator(run_config, batch_size=2, use_tpu=False)
estimator.train(gan.input_fn, steps=1)
示例10: _runSingleTrainingStep
# 需要導入模塊: from absl.testing import parameterized [as 別名]
# 或者: from absl.testing.parameterized import parameters [as 別名]
def _runSingleTrainingStep(self, architecture, loss_fn, penalty_fn):
parameters = {
"architecture": architecture,
"lambda": 1,
"z_dim": 128,
}
with gin.unlock_config():
gin.bind_parameter("penalty.fn", penalty_fn)
gin.bind_parameter("loss.fn", loss_fn)
dataset = datasets.get_dataset("cifar10")
gan = ModularGAN(
dataset=dataset,
parameters=parameters,
model_dir=self.model_dir,
conditional="biggan" in architecture)
estimator = gan.as_estimator(self.run_config, batch_size=2, use_tpu=False)
estimator.train(gan.input_fn, steps=1)
示例11: testSingleTrainingStepWithJointGenForDisc
# 需要導入模塊: from absl.testing import parameterized [as 別名]
# 或者: from absl.testing.parameterized import parameters [as 別名]
def testSingleTrainingStepWithJointGenForDisc(self):
parameters = {
"architecture": c.DUMMY_ARCH,
"lambda": 1,
"z_dim": 120,
"disc_iters": 2,
}
dataset = datasets.get_dataset("cifar10")
gan = ModularGAN(
dataset=dataset,
parameters=parameters,
model_dir=self.model_dir,
experimental_joint_gen_for_disc=True,
experimental_force_graph_unroll=True,
conditional=True)
estimator = gan.as_estimator(self.run_config, batch_size=2, use_tpu=False)
estimator.train(gan.input_fn, steps=1)
示例12: testSingleTrainingStepDiscItersWithEma
# 需要導入模塊: from absl.testing import parameterized [as 別名]
# 或者: from absl.testing.parameterized import parameters [as 別名]
def testSingleTrainingStepDiscItersWithEma(self, disc_iters):
parameters = {
"architecture": c.DUMMY_ARCH,
"lambda": 1,
"z_dim": 128,
"dics_iters": disc_iters,
}
gin.bind_parameter("ModularGAN.g_use_ema", True)
dataset = datasets.get_dataset("cifar10")
gan = ModularGAN(
dataset=dataset,
parameters=parameters,
model_dir=self.model_dir)
estimator = gan.as_estimator(self.run_config, batch_size=2, use_tpu=False)
estimator.train(gan.input_fn, steps=1)
# Check for moving average variables in checkpoint.
checkpoint_path = tf.train.latest_checkpoint(self.model_dir)
ema_vars = sorted([v[0] for v in tf.train.list_variables(checkpoint_path)
if v[0].endswith("ExponentialMovingAverage")])
tf.logging.info("ema_vars=%s", ema_vars)
expected_ema_vars = sorted([
"generator/fc_noise/kernel/ExponentialMovingAverage",
"generator/fc_noise/bias/ExponentialMovingAverage",
])
self.assertAllEqual(ema_vars, expected_ema_vars)
示例13: _runSingleTrainingStep
# 需要導入模塊: from absl.testing import parameterized [as 別名]
# 或者: from absl.testing.parameterized import parameters [as 別名]
def _runSingleTrainingStep(self, architecture, loss_fn, penalty_fn,
labeled_dataset):
parameters = {
"architecture": architecture,
"lambda": 1,
"z_dim": 120,
}
with gin.unlock_config():
gin.bind_parameter("penalty.fn", penalty_fn)
gin.bind_parameter("loss.fn", loss_fn)
model_dir = self._get_empty_model_dir()
run_config = tf.contrib.tpu.RunConfig(
model_dir=model_dir,
tpu_config=tf.contrib.tpu.TPUConfig(iterations_per_loop=1))
dataset = datasets.get_dataset("cifar10")
gan = ModularGAN(
dataset=dataset,
parameters=parameters,
conditional=True,
model_dir=model_dir)
estimator = gan.as_estimator(run_config, batch_size=2, use_tpu=False)
estimator.train(gan.input_fn, steps=1)
示例14: _generate_message_parameters
# 需要導入模塊: from absl.testing import parameterized [as 別名]
# 或者: from absl.testing.parameterized import parameters [as 別名]
def _generate_message_parameters(want_permutations=False):
"""Generate message parameters for test cases.
Args:
want_permutations: bool, whether or not to run the messages through various
permutations.
Yields:
A list containing the list of messages.
"""
answer_message = survey_messages.Answer(
text='Left my laptop at home.',
more_info_enabled=False,
placeholder_text=None)
survey_messages_1 = survey_messages.Question(
question_type=survey_models.QuestionType.ASSIGNMENT,
question_text=_QUESTION.format(num=1),
answers=[answer_message],
rand_weight=1,
required=True)
survey_messages_2 = survey_messages.Question(
question_type=survey_models.QuestionType.ASSIGNMENT,
question_text=_QUESTION.format(num=2),
answers=[answer_message],
rand_weight=1,
enabled=False,
required=False)
survey_messages_3 = survey_messages.Question(
question_type=survey_models.QuestionType.RETURN,
question_text=_QUESTION.format(num=3),
answers=[answer_message],
rand_weight=1,
enabled=True)
messages = [
survey_messages_1, survey_messages_2,
survey_messages_3]
if want_permutations:
for p in itertools.permutations(messages):
yield [p]
else:
yield [messages]
示例15: _create_template_parameters
# 需要導入模塊: from absl.testing import parameterized [as 別名]
# 或者: from absl.testing.parameterized import parameters [as 別名]
def _create_template_parameters():
"""Creates a template list of parameters for parameterized test cases.
Yields:
A list containing values for template parameters
"""
template_name_value = 'this_template'
body_value = 'body update test'
title_value = 'title update test'
template_parameters = [template_name_value, title_value, body_value]
yield [template_parameters]