本文整理匯總了Python中absl.testing.absltest.get_default_test_tmpdir方法的典型用法代碼示例。如果您正苦於以下問題:Python absltest.get_default_test_tmpdir方法的具體用法?Python absltest.get_default_test_tmpdir怎麽用?Python absltest.get_default_test_tmpdir使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類absl.testing.absltest
的用法示例。
在下文中一共展示了absltest.get_default_test_tmpdir方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_run_pose_env_collect
# 需要導入模塊: from absl.testing import absltest [as 別名]
# 或者: from absl.testing.absltest import get_default_test_tmpdir [as 別名]
def test_run_pose_env_collect(self, demo_policy_cls):
urdf_root = pose_env.get_pybullet_urdf_root()
config_dir = 'research/pose_env/configs'
gin_config = os.path.join(
FLAGS.test_srcdir, config_dir, 'run_random_collect.gin')
gin.parse_config_file(gin_config)
tmp_dir = absltest.get_default_test_tmpdir()
root_dir = os.path.join(tmp_dir, str(demo_policy_cls))
gin.bind_parameter('PoseToyEnv.urdf_root', urdf_root)
gin.bind_parameter(
'collect_eval_loop.root_dir', root_dir)
gin.bind_parameter('run_meta_env.num_tasks', 2)
gin.bind_parameter('run_meta_env.num_episodes_per_adaptation', 1)
gin.bind_parameter(
'collect_eval_loop.policy_class', demo_policy_cls)
continuous_collect_eval.collect_eval_loop()
output_files = tf.io.gfile.glob(os.path.join(
root_dir, 'policy_collect', '*.tfrecord'))
self.assertLen(output_files, 2)
示例2: setUp
# 需要導入模塊: from absl.testing import absltest [as 別名]
# 或者: from absl.testing.absltest import get_default_test_tmpdir [as 別名]
def setUp(self):
super(MakeTrainTestSplitTest, self).setUp()
test_data_directory = test_utils.test_dir('testdata/')
self.temp_dir = tempfile.mkdtemp(dir=absltest.get_default_test_tmpdir())
test_sdf_file_large = os.path.join(test_data_directory, 'test_14_mend.sdf')
test_sdf_file_small = os.path.join(test_data_directory, 'test_2_mend.sdf')
max_atoms = ms_constants.MAX_ATOMS
self.mol_list_large = parse_sdf_utils.get_sdf_to_mol(
test_sdf_file_large, max_atoms=max_atoms)
self.mol_list_small = parse_sdf_utils.get_sdf_to_mol(
test_sdf_file_small, max_atoms=max_atoms)
self.inchikey_dict_large = train_test_split_utils.make_inchikey_dict(
self.mol_list_large)
self.inchikey_dict_small = train_test_split_utils.make_inchikey_dict(
self.mol_list_small)
self.inchikey_list_large = list(self.inchikey_dict_large.keys())
self.inchikey_list_small = list(self.inchikey_dict_small.keys())
示例3: test_atomic_write
# 需要導入模塊: from absl.testing import absltest [as 別名]
# 或者: from absl.testing.absltest import get_default_test_tmpdir [as 別名]
def test_atomic_write(self):
for name in ['foo.csv', 'baz.csv.bz2']:
dataframe = pd.DataFrame(dict(a=[1, 2], b=[4.0, 5.0]))
output_file = os.path.join(absltest.get_default_test_tmpdir(), name)
utils_impl.atomic_write_to_csv(dataframe, output_file)
dataframe2 = pd.read_csv(output_file, index_col=0)
pd.testing.assert_frame_equal(dataframe, dataframe2)
# Overwriting
dataframe3 = pd.DataFrame(dict(a=[1, 2, 3], b=[4.0, 5.0, 6.0]))
utils_impl.atomic_write_to_csv(dataframe3, output_file)
dataframe4 = pd.read_csv(output_file, index_col=0)
pd.testing.assert_frame_equal(dataframe3, dataframe4)
示例4: test_atomic_read
# 需要導入模塊: from absl.testing import absltest [as 別名]
# 或者: from absl.testing.absltest import get_default_test_tmpdir [as 別名]
def test_atomic_read(self):
for name in ['foo.csv', 'baz.csv.bz2']:
dataframe = pd.DataFrame(dict(a=[1, 2], b=[4.0, 5.0]))
csv_file = os.path.join(absltest.get_default_test_tmpdir(), name)
utils_impl.atomic_write_to_csv(dataframe, csv_file)
dataframe2 = utils_impl.atomic_read_from_csv(csv_file)
pd.testing.assert_frame_equal(dataframe, dataframe2)
示例5: setUp
# 需要導入模塊: from absl.testing import absltest [as 別名]
# 或者: from absl.testing.absltest import get_default_test_tmpdir [as 別名]
def setUp(self):
super(SpectraPredictorTest, self).setUp()
self.np_fingerprint_input = np.ones((2, 4096))
self.np_mol_weight_input = np.reshape(np.array([18., 16.]), (2, 1))
self.test_data_directory = test_utils.test_dir("testdata/")
self.temp_dir = tempfile.mkdtemp(dir=absltest.get_default_test_tmpdir())
self.test_file_short = os.path.join(self.test_data_directory,
"test_2_mend.sdf")
示例6: setUp
# 需要導入模塊: from absl.testing import absltest [as 別名]
# 或者: from absl.testing.absltest import get_default_test_tmpdir [as 別名]
def setUp(self):
self.temp_dir = tempfile.mkdtemp(dir=absltest.get_default_test_tmpdir())
示例7: testLoadValidationResult
# 需要導入模塊: from absl.testing import absltest [as 別名]
# 或者: from absl.testing.absltest import get_default_test_tmpdir [as 別名]
def testLoadValidationResult(self):
result = validation_result_pb2.ValidationResult(validation_ok=True)
path = os.path.join(absltest.get_default_test_tmpdir(), 'results.tfrecord')
with tf.io.TFRecordWriter(path) as writer:
writer.write(result.SerializeToString())
loaded_result = model_eval_lib.load_validation_result(path)
self.assertTrue(loaded_result.validation_ok)
示例8: testLoadValidationResultDir
# 需要導入模塊: from absl.testing import absltest [as 別名]
# 或者: from absl.testing.absltest import get_default_test_tmpdir [as 別名]
def testLoadValidationResultDir(self):
result = validation_result_pb2.ValidationResult(validation_ok=True)
path = os.path.join(absltest.get_default_test_tmpdir(),
constants.VALIDATIONS_KEY)
with tf.io.TFRecordWriter(path) as writer:
writer.write(result.SerializeToString())
loaded_result = model_eval_lib.load_validation_result(os.path.dirname(path))
self.assertTrue(loaded_result.validation_ok)
示例9: testLoadValidationResultEmptyFile
# 需要導入模塊: from absl.testing import absltest [as 別名]
# 或者: from absl.testing.absltest import get_default_test_tmpdir [as 別名]
def testLoadValidationResultEmptyFile(self):
path = os.path.join(absltest.get_default_test_tmpdir(),
constants.VALIDATIONS_KEY)
with tf.io.TFRecordWriter(path):
pass
with self.assertRaises(AssertionError):
model_eval_lib.load_validation_result(path)
示例10: setUpModule
# 需要導入模塊: from absl.testing import absltest [as 別名]
# 或者: from absl.testing.absltest import get_default_test_tmpdir [as 別名]
def setUpModule():
# Flags are not parsed when this test is invoked by `nosetests`, so we fall
# back on using the default value for `--test_tmpdir`.
if not FLAGS.is_parsed():
FLAGS.test_tmpdir = absltest.get_default_test_tmpdir()
FLAGS.mark_as_parsed()
示例11: setUpModule
# 需要導入模塊: from absl.testing import absltest [as 別名]
# 或者: from absl.testing.absltest import get_default_test_tmpdir [as 別名]
def setUpModule():
# Flags are not parsed when this test is invoked by `nosetests`, so we fall
# back on using the default value for ``--test_tmpdir`.
if not FLAGS.is_parsed():
FLAGS.test_tmpdir = absltest.get_default_test_tmpdir()
FLAGS.mark_as_parsed()
示例12: setup_debug_mode
# 需要導入模塊: from absl.testing import absltest [as 別名]
# 或者: from absl.testing.absltest import get_default_test_tmpdir [as 別名]
def setup_debug_mode(self, debug_mode_enabled, full_dump_enabled=False):
if debug_mode_enabled:
debugging.enable_debug_mode()
else:
debugging.disable_debug_mode()
if full_dump_enabled:
base_dir = absltest.get_default_test_tmpdir()
self.dump_dir = os.path.join(base_dir, 'mjcf_debugging_test')
shutil.rmtree(self.dump_dir, ignore_errors=True)
os.mkdir(self.dump_dir)
else:
self.dump_dir = ''
debugging.set_full_dump_dir(self.dump_dir)
示例13: test_save_images_on_failure
# 需要導入模塊: from absl.testing import absltest [as 別名]
# 或者: from absl.testing.absltest import get_default_test_tmpdir [as 別名]
def test_save_images_on_failure(self):
random_state = np.random.RandomState(SEED)
image1 = random_state.randint(0, 255, size=(64, 64, 3), dtype=np.uint8)
image2 = random_state.randint(0, 255, size=(64, 64, 3), dtype=np.uint8)
diff = (0.5 * (image2.astype(np.int16) - image1 + 255)).astype(np.uint8)
message = 'exception message'
output_dir = absltest.get_default_test_tmpdir()
@image_utils.save_images_on_failure(output_dir=output_dir)
def func():
raise image_utils.ImagesNotCloseError(message, image1, image2)
with six.assertRaisesRegex(self, image_utils.ImagesNotCloseError,
'{}.*'.format(message)):
func()
def validate_saved_file(name, expected_contents):
path = os.path.join(output_dir, '{}-{}.png'.format('func', name))
self.assertTrue(os.path.isfile(path))
image = Image.open(path)
actual_contents = np.array(image)
np.testing.assert_array_equal(expected_contents, actual_contents)
validate_saved_file('expected', image1)
validate_saved_file('actual', image2)
validate_saved_file('difference', diff)
示例14: setUp
# 需要導入模塊: from absl.testing import absltest [as 別名]
# 或者: from absl.testing.absltest import get_default_test_tmpdir [as 別名]
def setUp(self):
"""Sets up a dataset json for regular, baseline, and all_predicted cases."""
super(MoleculeEstimatorTest, self).setUp()
self.test_data_directory = test_utils.test_dir('testdata/')
record_file = os.path.join(self.test_data_directory, 'test_14_record.gz')
self.num_eval_examples = parse_sdf_utils.parse_info_file(record_file)[
'num_examples']
self.temp_dir = tempfile.mkdtemp(dir=absltest.get_default_test_tmpdir())
self.default_dataset_config_file = os.path.join(self.temp_dir,
'dataset_config.json')
self.baseline_dataset_config_file = os.path.join(
self.temp_dir, 'baseline_dataset_config.json')
self.all_predicted_dataset_config_file = os.path.join(
self.temp_dir, 'all_predicted_dataset_config.json')
dataset_names = [
ds_constants.SPECTRUM_PREDICTION_TRAIN_KEY,
ds_constants.SPECTRUM_PREDICTION_TEST_KEY,
ds_constants.LIBRARY_MATCHING_OBSERVED_KEY,
ds_constants.LIBRARY_MATCHING_PREDICTED_KEY,
ds_constants.LIBRARY_MATCHING_QUERY_KEY
]
default_dataset_config = {key: [record_file] for key in dataset_names}
default_dataset_config[
ds_constants.TRAINING_SPECTRA_ARRAY_KEY] = os.path.join(
self.test_data_directory, 'test_14.spectra_library.npy')
with tf.gfile.Open(self.default_dataset_config_file, 'w') as f:
json.dump(default_dataset_config, f)
# Test estimator behavior when predicted set is empty
baseline_dataset_config = dict(
[(key, [record_file])
if key != ds_constants.LIBRARY_MATCHING_PREDICTED_KEY else (key, [])
for key in dataset_names])
baseline_dataset_config[
ds_constants.TRAINING_SPECTRA_ARRAY_KEY] = os.path.join(
self.test_data_directory, 'test_14.spectra_library.npy')
with tf.gfile.Open(self.baseline_dataset_config_file, 'w') as f:
json.dump(baseline_dataset_config, f)
# Test estimator behavior when observed set is empty
all_predicted_dataset_config = dict(
[(key, [record_file])
if key != ds_constants.LIBRARY_MATCHING_OBSERVED_KEY else (key, [])
for key in dataset_names])
all_predicted_dataset_config[
ds_constants.TRAINING_SPECTRA_ARRAY_KEY] = os.path.join(
self.test_data_directory, 'test_14.spectra_library.npy')
with tf.gfile.Open(self.all_predicted_dataset_config_file, 'w') as f:
json.dump(all_predicted_dataset_config, f)