當前位置: 首頁>>代碼示例>>Python>>正文


Python logging.warn方法代碼示例

本文整理匯總了Python中absl.logging.warn方法的典型用法代碼示例。如果您正苦於以下問題:Python logging.warn方法的具體用法?Python logging.warn怎麽用?Python logging.warn使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在absl.logging的用法示例。


在下文中一共展示了logging.warn方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: disassociate_tag

# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import warn [as 別名]
def disassociate_tag(self, user_email, tag_name):
    """Disassociates a tag from a device.

    Args:
      user_email: str, the email of the user taking the action.
      tag_name: str, the name of the tag to be disassociated.

    Raises:
      ValueError: If the tag requested to be disassociated from the device is
        not currently associated with the device.
    """

    for tag_reference in self.tags:
      if tag_reference.tag.name == tag_name:
        self.tags.remove(tag_reference)
        self.put()
        self.stream_to_bq(
            user_email, 'Removed tag %s from device %s' %
            (tag_reference.tag.name, self.identifier))
        return
    logging.warn(
        'Tag with name %s is not associated with device %s',
        tag_name, self.identifier) 
開發者ID:google,項目名稱:loaner,代碼行數:25,代碼來源:device_model.py

示例2: num_rewards

# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import warn [as 別名]
def num_rewards(self):
    """Returns the number of distinct rewards.

    Returns:
      Returns None if the reward range is infinite or the processed rewards
      aren't discrete, otherwise returns the number of distinct rewards.
    """

    # Pre-conditions: reward range is finite.
    #               : processed rewards are discrete.
    if not self.is_reward_range_finite:
      logging.warn("Infinite reward range, `num_rewards returning None`")
      return None
    if not self.is_processed_rewards_discrete:
      logging.warn(
          "Processed rewards are not discrete, `num_rewards` returning None")
      return None

    min_reward, max_reward = self.reward_range
    return max_reward - min_reward + 1 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:22,代碼來源:env_problem.py

示例3: generate_raw_dataset

# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import warn [as 別名]
def generate_raw_dataset(self, args):
    logging.warn(
        "Not actually regenerating the raw dataset.\n"
        "To regenerate the raw CSV dataset, see the TFX Chicago Taxi example "
        "for details as to how to do so. "
        "tfx/examples/chicago_taxi_pipeline/taxi_pipeline_kubeflow_gcp.py "
        "has the BigQuery query used to generate the dataset.\n"
        "After regenerating the raw CSV dataset, you should also regenerate "
        "the derived TFRecords dataset. You can do so by passing "
        "--generate_dataset_args=/path/to/csv_dataset.csv to "
        "regenerate_datasets.py.")

    if args:
      logging.info("Converting CSV at %s to TFRecords", args)
      self.convert_csv_to_tf_examples(args, self.dataset_path())
      logging.info("TFRecords written to %s", self.dataset_path()) 
開發者ID:tensorflow,項目名稱:tfx,代碼行數:18,代碼來源:dataset.py

示例4: check_invalid_state

# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import warn [as 別名]
def check_invalid_state(self):
    """Checks whether the physics state is invalid at exit.

    Yields:
      None

    Raises:
      PhysicsError: if the simulation state is invalid at exit, unless this
        context is nested inside a `suppress_physics_errors` context, in which
        case a warning will be logged instead.
    """
    # `np.copyto(dst, src)` is marginally faster than `dst[:] = src`.
    np.copyto(self._warnings_before, self._warnings)
    yield
    np.greater(self._warnings, self._warnings_before, out=self._new_warnings)
    if any(self._new_warnings):
      warning_names = np.compress(self._new_warnings, enums.mjtWarning._fields)
      message = _INVALID_PHYSICS_STATE.format(
          warning_names=', '.join(warning_names))
      if self._warnings_cause_exception:
        raise _control.PhysicsError(message)
      else:
        logging.warn(message) 
開發者ID:deepmind,項目名稱:dm_control,代碼行數:25,代碼來源:engine.py

示例5: get_vars_to_restore

# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import warn [as 別名]
def get_vars_to_restore(ckpt=None):
  """Returns list of variables that should be saved/restored.

  Args:
    ckpt: Path to existing checkpoint.  If present, returns only the subset of
        variables that exist in given checkpoint.

  Returns:
    List of all variables that need to be saved/restored.
  """
  model_vars = tf.trainable_variables()
  # Add batchnorm variables.
  bn_vars = [v for v in tf.global_variables()
             if 'moving_mean' in v.op.name or 'moving_variance' in v.op.name]
  model_vars.extend(bn_vars)
  model_vars = sorted(model_vars, key=lambda x: x.op.name)
  if ckpt is not None:
    ckpt_var_names = tf.contrib.framework.list_variables(ckpt)
    ckpt_var_names = [name for (name, unused_shape) in ckpt_var_names]
    for v in model_vars:
      if v.op.name not in ckpt_var_names:
        logging.warn('Missing var %s in checkpoint: %s', v.op.name,
                     os.path.basename(ckpt))
    model_vars = [v for v in model_vars if v.op.name in ckpt_var_names]
  return model_vars 
開發者ID:generalized-iou,項目名稱:g-tensorflow-models,代碼行數:27,代碼來源:util.py

示例6: build

# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import warn [as 別名]
def build(self, strategy: tf.distribute.Strategy = None) -> tf.data.Dataset:
    """Construct a dataset end-to-end and return it using an optional strategy.

    Args:
      strategy: a strategy that, if passed, will distribute the dataset
        according to that strategy. If passed and `num_devices > 1`,
        `use_per_replica_batch_size` must be set to `True`.

    Returns:
      A TensorFlow dataset outputting batched images and labels.
    """
    if strategy:
      if strategy.num_replicas_in_sync != self.config.num_devices:
        logging.warn('Passed a strategy with %d devices, but expected'
                     '%d devices.',
                     strategy.num_replicas_in_sync,
                     self.config.num_devices)
      dataset = strategy.experimental_distribute_datasets_from_function(
          self._build)
    else:
      dataset = self._build()

    return dataset 
開發者ID:tensorflow,項目名稱:models,代碼行數:25,代碼來源:dataset_factory.py

示例7: _check_budget

# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import warn [as 別名]
def _check_budget(self, config):
    num_trainables = utils.log_trainables()
    if config.num_params > -1:
      assert num_trainables <= config.num_params, (
          'The number of trainable parameters ({}) exceeds the budget ({}). '
          .format(num_trainables, config.num_params))
      if num_trainables < 0.98*(config.num_params-500):
        logging.warn('Number of parameters (%s) is way below the budget (%s)',
                     num_trainables, config.num_params) 
開發者ID:deepmind,項目名稱:lamb,代碼行數:11,代碼來源:lm.py

示例8: _get_observations

# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import warn [as 別名]
def _get_observations(self, target_game_loop):
    # Transform in the thread so it runs while waiting for other observations.
    def parallel_observe(c, f):
      obs = c.observe(target_game_loop=target_game_loop)
      agent_obs = f.transform_obs(obs)
      return obs, agent_obs

    with self._metrics.measure_observation_time():
      self._obs, self._agent_obs = zip(*self._parallel.run(
          (parallel_observe, c, f)
          for c, f in zip(self._controllers, self._features)))

    game_loop = self._agent_obs[0].game_loop[0]
    if (game_loop < target_game_loop and
        not any(o.player_result for o in self._obs)):
      raise ValueError(
          ("The game didn't advance to the expected game loop. "
           "Expected: %s, got: %s") % (target_game_loop, game_loop))
    elif game_loop > target_game_loop and target_game_loop > 0:
      logging.warn("Received observation %d step(s) late: %d rather than %d.",
                   game_loop - target_game_loop, game_loop, target_game_loop)

    if self._realtime:
      # Track delays on executed actions.
      # Note that this will underestimate e.g. action sent, new observation
      # taken before action executes, action executes, observation taken
      # with action. This is difficult to avoid without changing the SC2
      # binary - e.g. send the observation game loop with each action,
      # return them in the observation action proto.
      if self._last_obs_game_loop is not None:
        for i, obs in enumerate(self._obs):
          for action in obs.actions:
            if action.HasField("game_loop"):
              delay = action.game_loop - self._last_obs_game_loop
              if delay > 0:
                num_slots = len(self._action_delays[i])
                delay = min(delay, num_slots - 1)  # Cap to num buckets.
                self._action_delays[i][delay] += 1
                break
      self._last_obs_game_loop = game_loop 
開發者ID:deepmind,項目名稱:pysc2,代碼行數:42,代碼來源:sc2_env.py

示例9: _choose_rec_from_softmax

# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import warn [as 別名]
def _choose_rec_from_softmax(self, softmax_probs, deterministic):
    if deterministic:
      rec = np.argmax(softmax_probs)
    else:
      # Fix the probability vector to avoid np.random.choice exception.
      softmax_probs = np.nan_to_num(softmax_probs)
      softmax_probs += 1e-10
      if not np.any(softmax_probs):
        logging.warn('All zeros in the softmax prediction.')
      softmax_probs = softmax_probs / np.sum(softmax_probs)
      # TODO(): Use epsilon for exploration at the model level.
      rec = self._rng.choice(self.action_space_size, p=softmax_probs)
    return rec

  # TODO(): Move the simulation function to a runner class. 
開發者ID:google,項目名稱:ml-fairness-gym,代碼行數:17,代碼來源:rnn_agent.py

示例10: _observer

# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import warn [as 別名]
def _observer(self, subgraph):
    input_nodes = self._inputs_for_observed_module(subgraph)
    if input_nodes is None:
      # We do not fail as we want to allow higher-level Sonnet components.
      # In practice, the rest of the logic will fail if we are unable to
      # connect all low-level modules.
      logging.warn('Unprocessed module "%s"', str(subgraph.module))
      return
    if subgraph.outputs in input_nodes:
      # The Sonnet module is just returning its input as its output.
      # This may happen with a reshape in which the shape does not change.
      return

    self._add_module(self._wrapper_for_observed_module(subgraph),
                     subgraph.outputs, *input_nodes) 
開發者ID:deepmind,項目名稱:interval-bound-propagation,代碼行數:17,代碼來源:model.py

示例11: _propagate_through

# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import warn [as 別名]
def _propagate_through(self, module, input_bounds):
    if isinstance(module, layers.BatchNorm):
      # This IBP-specific batch-norm implementation exposes stats recorded
      # the most recent time the BatchNorm module was connected.
      # These will be either the batch stats (e.g. if training) or the moving
      # averages, depending on how the module was called.
      mean = module.mean
      variance = module.variance
      epsilon = module.epsilon
      scale = module.scale
      bias = module.bias

    else:
      # This plain Sonnet batch-norm implementation only exposes the
      # moving averages.
      logging.warn('Sonnet BatchNorm module encountered: %s. '
                   'IBP will always use its moving averages, not the local '
                   'batch stats, even in training mode.', str(module))
      mean = module.moving_mean
      variance = module.moving_variance
      epsilon = module._eps  # pylint: disable=protected-access
      try:
        bias = module.beta
      except snt.Error:
        bias = None
      try:
        scale = module.gamma
      except snt.Error:
        scale = None

    return input_bounds.apply_batch_norm(self, mean, variance,
                                         scale, bias, epsilon) 
開發者ID:deepmind,項目名稱:interval-bound-propagation,代碼行數:34,代碼來源:verifiable_wrapper.py

示例12: apply_increasing_monotonic_fn

# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import warn [as 別名]
def apply_increasing_monotonic_fn(self, wrapper, fn, *args, **parameters):
    if fn.__name__ != 'relu':
      # Fallback to regular interval bound propagation for unsupported
      # operations.
      logging.warn('"%s" is not supported by SymbolicBounds. '
                   'Fallback on IntervalBounds.', fn.__name__)
      interval_bounds = basic_bounds.IntervalBounds.convert(self)
      converted_args = [basic_bounds.IntervalBounds.convert(b) for b in args]
      interval_bounds = interval_bounds._increasing_monotonic_fn(  # pylint: disable=protected-access
          fn, *converted_args)
      return self.convert(interval_bounds)

    concrete = self.concretize()
    lb, ub = concrete.lower, concrete.upper
    is_ambiguous = tf.logical_and(ub > 0, lb < 0)
    # Ensure denominator is always positive, even when not needed.
    ambiguous_denom = tf.where(is_ambiguous, ub - lb, tf.ones_like(ub))
    scale = tf.where(
        is_ambiguous, ub / ambiguous_denom,
        tf.where(lb >= 0, tf.ones_like(lb), tf.zeros_like(lb)))
    bias = tf.where(is_ambiguous, -lb, tf.zeros_like(lb))
    lb_out = LinearExpression(
        w=tf.expand_dims(scale, 1) * self.lower.w,
        b=scale * self.lower.b,
        lower=self.lower.lower, upper=self.lower.upper)
    ub_out = LinearExpression(
        w=tf.expand_dims(scale, 1) * self.upper.w,
        b=scale * (self.upper.b + bias),
        lower=self.upper.lower, upper=self.upper.upper)
    return SymbolicBounds(lb_out, ub_out).with_priors(wrapper.output_bounds) 
開發者ID:deepmind,項目名稱:interval-bound-propagation,代碼行數:32,代碼來源:fastlin.py

示例13: map_feed_dict_unsafe

# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import warn [as 別名]
def map_feed_dict_unsafe(feature_placeholders_spec, np_inputs_spec):
  """Deprecated function to create a feed_dict to be passed to session.run.

  tensorspec_utils.map_feed_dict should be used instead.  map_feed_dict_unsafe
  does not check that there is actually any agreement between
  feature_placeholders_spec or np_inputs spec in terms of dtype, shape
  or additional unused attributes within np_inputs_spec.

  Args:
    feature_placeholders_spec: An TensorSpecStruct containing
      {str: tf.placeholder}.
    np_inputs_spec: The numpy input according to the same spec.

  Returns:
    A mapping {placeholder: np.ndarray} which can be fed to a tensorflow
      session.run.
  """
  logging.warning('map_feed_dict_unsafe is deprecated. '
                  'Please update to map_feed_dict.')
  flat_spec = flatten_spec_structure(feature_placeholders_spec)
  flat_np_inputs = flatten_spec_structure(np_inputs_spec)
  for key, value in flat_np_inputs.items():
    if key not in flat_spec:
      logging.warn(
          'np_inputs has an input: %s, not found in the tensorspec.', key)
  feed_dict = {}
  for key, value in flat_spec.items():
    feed_dict[value] = flat_np_inputs[key]
  return feed_dict 
開發者ID:google-research,項目名稱:tensor2robot,代碼行數:31,代碼來源:tensorspec_utils.py

示例14: is_encoded_image_spec

# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import warn [as 別名]
def is_encoded_image_spec(tensor_spec):
  """Determines whether the passed tensor_spec speficies an encoded image."""
  if hasattr(tensor_spec, 'data_format'):
    # If tensor_spec is an ExtendedTensorSpec, use the data_format to check.
    return (tensor_spec.data_format is not None) and (
        tensor_spec.data_format.upper() in ['JPEG', 'PNG'])
  else:
    # Otherwise default to the old "name contains 'image'" logic.
    logging.warn('Using a deprecated tensor specification. '
                 'Use ExtendedTensorSpec.')
    return 'image' in tensor_spec.name 
開發者ID:google-research,項目名稱:tensor2robot,代碼行數:13,代碼來源:tensorspec_utils.py

示例15: __init__

# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import warn [as 別名]
def __init__(self, year, track='main', language='EN', **kwargs):
    """BuilderConfig for Qa4Mre.

    Args:
      year: string, year of dataset
      track: string, the task track from PATHS[year]['_TRACKS'].
      language: string, Acronym for language in the main task.
      **kwargs: keyword arguments forwarded to super.
    """
    if track.lower() not in PATHS[year]['_TRACKS']:
      raise ValueError(
          'Incorrect track. Track should be one of the following: ',
          PATHS[year]['_TRACKS'])

    if track.lower() != 'main' and language.upper() != 'EN':
      logging.warn('Only English documents available for pilot '
                   'tracks. Setting English by default.')
      language = 'EN'

    if track.lower() == 'main' and language.upper(
    ) not in PATHS[year]['_LANGUAGES_MAIN']:
      raise ValueError(
          'Incorrect language for the main track. Correct options: ',
          PATHS[year]['_LANGUAGES_MAIN'])

    self.year = year
    self.track = track.lower()
    self.lang = language.upper()

    name = self.year + '.' + self.track + '.' + self.lang

    description = _DESCRIPTION
    description += ('This configuration includes the {} track for {} language '
                    'in {} year.').format(self.track, self.lang, self.year)

    super(Qa4mreConfig, self).__init__(
        name=name,
        description=description,
        version=tfds.core.Version('0.1.0'),
        **kwargs) 
開發者ID:tensorflow,項目名稱:datasets,代碼行數:42,代碼來源:qa4mre.py


注:本文中的absl.logging.warn方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。